LIMITS OF QUOTIENTS FOR THE CONVOLVED FIBONACCI SEQUENCE AND RELATED SEQUENCES

(29)

$$\lim_{i \to \infty} \frac{g_{i+k}^{(n)}}{g_{i+m}^{(n+1)}} = 0.$$

REFERENCES

- 1. G. E. Bergum and V. E. Hoggatt, Jr., "An Application of the Characteristic of the Generalized Fibonacci Fibonacci Sequence," *The Fibonacci Quarterly*, to appear, October, 1977.
- 2. G.E. Bergum and V.E. Hoggatt, Jr., "Numerator Polynomial Coefficient Array for the Convolved Fibonacci Sequence," *The Fibonacci Quarterly*, Vol. 14, No. 1 (Feb. 1976), pp. 43–47.
- Marjorie Bicknell and V. E. Hoggatt, Jr., "Convolution Triangles," The Fibonacci Quarterly, Vol. 10, No. 6, (Dec. 1972), pp. 599–608.
- 4. The Fibonacci Association, A Primer for the Fibonacci Numbers, Parts VI and XII.

SUMMATION OF MULTIPARAMETER HARMONIC SERIES

B. J. CERIMELE

Lilly Research Laboratories, Indianapolis, Indiana 46206

1. INTRODUCTION

Consider the multiparameter alternating harmonic series denoted and defined by

(1)

$$\omega(j; k_1, \dots, k_n) = \sum_{i=0}^{\infty} (-1)^i / (j + s_i)$$

where *j* and the k_i are positive integers, $s_0 = 0$, $s_n = S$, and

$$s_i = [i/n]S + \sum_{t=1}^{i \mod n} k_t.$$

Note that the parameters k_1, \dots, k_n are successive cyclic denominator increments. In the ensuing treatment summation formulas for such series, to be called ω -series, are developed which admit evaluation in terms of elementary functions. An example is included to illustrate the formulas.

2. SUMMATION FORMULAS

The expression of the summation formulas for the ω -series (1) is based upon the following two lemmas. Lemma 1.

$$\begin{split} \omega(j;k) &= (\frac{1}{2}k)G(j/k) = \int_{0}^{1} x^{j-1} dx/(1+x^{k}) \\ &= (-1)^{j-1} (r/k) ln(1+x) \\ &- (2/k) \sum_{i=0}^{q-1} \left[P_{i}(x) \cos\left((2i+1)j\pi/k\right) - Q_{i}(x) \sin\left((2i+1)j\pi/k\right) \right] \Big|_{0}^{1} , \end{split}$$

[Continued on page 144.]