Proof. This follows from the Theorem with $\mu=1+1 / \sigma, \lambda=\sigma+1$, and $b=c=1$. Q.E.D.
(Corollary 3 is part of Problem 22 in [3, p. 84].)

REFERENCES

1. H. S. M. Coxeter, "The Golden Section, Phyllotaxis, and Wy thoff's Game," Scripta Mathematica 19 (1953), pp. 135-143.
2. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th Ed., Oxford, 1960.
3. I. Niven and H. Zuckerman, An Introduction to the The ory of Numbers, 3rd ed., Wiley, N. Y., 1972.

[Continued from page 149.]

*

For an ω-series with an arbitrary odd number of k_{i} parameters two cycles of parametric incrementation are required to bring the series into alignment for grouping. Use of the identity

$$
G(z)=\psi(z / 2+1 / 2)-\psi(z / 2),
$$

[4, p. 20], and Lemma 1 render the following summation expression.
The orem 2.

$$
\omega\left(j ; k_{1}, \cdots, k_{2 n+1}\right)=\sum_{i=0}^{2 n}(-1)^{i} \omega\left(j+s_{i} ; S\right)=(1 / 2 S) \sum_{i=0}^{2 n}(-1)^{i} G\left(\left(j+s_{i}\right) / S\right)
$$

3. EXAMPLES

Some calculations for the uniparameter ω-series are to be found in [1] and for the biparameter series in [2]. The above theorems and their proofs can be illustrated with the following triparameter ω-series:

$$
\begin{aligned}
\omega(1 ; 1,1,2)= & {[(1-1 / 2)+(1 / 3-1 / 5)+(1 / 6-1 / 7)]+[(1 / 9-1 / 10)+(1 / 11-1 / 13)+\ldots] } \\
& +[(1 / 17-1 / 18)+\ldots]+\ldots \\
= & (1-1 / 2)+(1 / 9-1 / 10)+(1 / 17-1 / 18)+\cdots+(1 / 3-1 / 5)+(1 / 11-1 / 13)+\ldots \\
& +(1 / 6-1 / 7)+\ldots \\
= & \omega(1 ; 1,7)+\omega(3 ; 2,6)+\omega(6 ; 1,7) \quad \\
= & (1 / 8)[G(3 / 4)-G(1 / 2)+G(1 / 4)] \\
= & (1 / 8)[\sqrt{2}(\pi-21 n(1+\sqrt{2})-\pi+\sqrt{2}(\pi+21 n(1+\sqrt{2}))] \\
= & (\pi / 8)[2 \sqrt{2}-1] .
\end{aligned}
$$

REFERENCES

1. B. J. Cerimele, "Extensions on a Theme Concerning Conditionally Convergent Series," Mathematics Mag., Vol. 40, No. 3, May, 1967.
2. B. J. Cerimele, "Summation of Generalized Harmonic Seires with Periodic Sign Distributions," Pi Mu EpsiIon Journal, Vol. 4, No. 8, Spring, 1968,
3. H. T. Davis, "Tables of Higher Mathematical Functions," The Principia Press, 1933.
4. A. Erdelyi (ed), Higher Transcendental Functions, Vol. 1, McGraw Hill, 1953.
5. W. Grobner and N. Hofreiter, Integraltafel, Vol. 1, Springer-Verlag, 1961.
6. J. B. W. Jolly, Summation of Series, Dover Publications, 1961.
