DIOPHANTINE EQUATIONS INVOLVING THE GREATEST INTEGER FUNCTION

RONALD EVANS

University of California, San Diego, California

DEDICATED TO JACKSON STATE UNIVERSITY 1877-1977

It is known [1, p. 142] that if λ and μ are fixed positive irrationals such that $\mu \lambda=\mu+\lambda$, then the equation $[n \lambda]=[m \mu]$ has no solution in integers m and n, where $[x]$ denotes the greatest integer less than or equal to x. We prove the following generalization.
Theorem. Let λ and μ be fixed positive irrationals. The equation $[n \lambda]=[m \mu]$ has no solution in integers m and n if and only if $\mu \lambda=b \mu+c \lambda$ for some integers b and c such that $\lambda>b>0$.
Proof. Let \boldsymbol{Z} denote the set of integers. Suppose first that $\mu \lambda=b \mu+c \lambda$, where $b, c \in \boldsymbol{Z}, \lambda>b>0$. Assume (for the purpose of contradiction) that

$$
\begin{equation*}
[n \lambda]=[m \mu] \tag{1}
\end{equation*}
$$

for some $m, n \in \boldsymbol{Z}$. Write $\theta=\mu / \lambda, \epsilon=m \theta-[m \theta]$. Since $\mu=b \theta+c, \theta$ is irrational and thus $0<\epsilon<1$. By (1), $n \lambda=m \mu+\sigma$, where $-1<\sigma<1$. Thus $n=m \theta+\sigma / \lambda=[m \theta]+(\epsilon+\sigma / \lambda)$. Since $\lambda>1,-1<(\epsilon+\sigma / \lambda)<$ 2. Therefore, $n=[m \theta]+\delta$, where $\delta=0$ or 1 .

We have
(2)

$$
m \mu=m b \theta+m c=b \epsilon+b[m \theta]+m c .
$$

Hence,
(3)

$$
[m \mu]=[b \in]+b[m \theta]+m c .
$$

We have, using (2),
(4)

$$
\begin{aligned}
{[n \lambda]=[(m \theta+\delta-\epsilon) \lambda] } & =[m \mu+(\delta-\epsilon) \lambda]=[b \epsilon+b[m \theta]+m c+(\delta-\epsilon) \lambda] \\
& =[b \epsilon+(\delta-\epsilon) \lambda]+b[m \theta]+m c .
\end{aligned}
$$

Since the left sides of (3) and (4) are equal,

$$
[b \epsilon]=[b \epsilon+(\delta-\epsilon) \lambda] .
$$

If $\delta=0$, then $[b \epsilon]=[(b-\lambda) \epsilon]$, a contradiction, since $b \epsilon>0$ and $(b-\lambda) \epsilon<0$. If $\delta=1$, then

$$
b>[b \epsilon]=[b \epsilon+(1-\epsilon) \lambda] \geqslant[b \epsilon+(1-\epsilon) b]=b
$$

a contradiction. This proves that there are no integers m, n for which (1) holds.
To prove the converse, it suffices to show that (1) has a solution in each of the following three cases. Case 1 : μ, θ, and 1 are linearly independent over the rationals, i.e., if $a \mu \lambda=b \mu+c \lambda$ with $a, b, c \in \boldsymbol{Z}$, then $a=b=c=0$; Case 2: $a \mu \lambda=b \mu+c \lambda$, where a, b, and c are relatively prime integers, $a \geqslant 0$, and $a \neq 1$; Case 3: $\mu \lambda=b \mu+c \lambda$, where $b, c \in \boldsymbol{Z}$ and either $b<0$ or $\lambda<b$.
Case 1. By Kronecker's Theorem [2, p. 382], there exist $m, z_{1}, z_{2} \in \boldsymbol{Z}$ such that

$$
m \mu=1 / 2+z_{1}+E_{1}
$$

and

$$
m \theta=1 / 3\left(1+\lambda+z_{2}+E_{2},\right.
$$

where $\left|E_{i}\right|<1 / 6(1+\lambda)$ for $i=1,2$. Then

$$
\epsilon=m \theta-[m \theta]=1 / 3(\lambda+1)+E_{2}
$$

and

$$
m \mu-\epsilon \lambda=(1 / 2-\lambda / 3(\lambda+1))+z_{1}+\left(E_{1}-\lambda E_{2}\right) .
$$

Since $\left|E_{1}-\lambda E_{2}\right|<1 / 6<1 / 2-\lambda / 3(\lambda+1)$, we have $[m \mu-\epsilon \lambda]=z_{1}$. Since $[m \mu]=z_{1}$, we have

$$
[m \mu]=[m \mu-\epsilon \lambda]=[(m \theta-\epsilon) \lambda]=[[m \theta] \lambda],
$$

so that Eq. (1) has a solution with $n=[m \theta]$.
Case 2. If $a=0$, then (1) has the solution $m=b, n=-c$. Thus assume $a \geqslant 2$. Since $(a, b, c)=1$, either $a \nmid b$ or $a \nmid c$. Without loss of generality, we assume $a \nmid b$. Since $\mu=b \theta / a+c / a, \theta$ is irrational. Thus there exist $p, q \in \boldsymbol{Z}$ such that $p \theta=\eta+q+E$, where $\eta=1 / a+1 / 2 a(a \lambda+|b|)$ and $|E|<\eta-1 / a$. Let $m=a p$ and $\epsilon=m \theta-[m \theta]$. Then

$$
m \theta=(a q+1)+(a \eta-1)+a E,
$$

so that
(5)

$$
[m \theta]=a q+1
$$

Also, $\epsilon=(a \eta-1)+a E$, so that
(6)

$$
0<\epsilon<2(a \eta-1)=1 /(a \lambda+|b|) .
$$

By (5),
(7) $\quad m \mu=m b \theta / a+m c / a=b \epsilon / a+b[m \theta] / a+m c / a=b \epsilon / a+b / a+b q+p c$.

Thus,
(8)

$$
[m \mu]=[b \in / a+b / a]+b q+p c .
$$

Since $b \nmid a$ and since $|b \in / a|<1 / a$ by (6), it follows from (8) that
(9)

$$
[m \mu]=[b / a]+b q+p c .
$$

By (7),

$$
m \mu-\epsilon \lambda=(b-a \lambda) \epsilon / a+b / a+b q+p c,
$$

so that
(10)

$$
[m \mu-\epsilon \lambda]=[(b-a \lambda) \epsilon / a+b / a]+b q+p c .
$$

Since $\mid(b-a \lambda / \epsilon / a \mid<1 / a$ by (6), it follows from (10) that
(11)

$$
[m \mu-\epsilon \lambda]=[b / a]+b q+p c .
$$

By (9) and (11),

$$
[m \mu]=[m \mu-\epsilon \lambda]=[(m \theta-\epsilon) \lambda]=[[m \theta] \lambda] .
$$

Thus (1) has a solution with $n=[m \theta]$.
Case 3. We argue as in Case 2 with $a=1$. By (8) with $a=1$,

$$
\begin{equation*}
[m \mu]=[b \in]+b+b q+p c . \tag{12}
\end{equation*}
$$

By (10) with $a=1$,
(13)

$$
[m \mu-\epsilon \lambda]=[(b-\lambda) \epsilon]+b+b q+p c .
$$

By (6), with $a=1,0<\epsilon<1 /(\lambda+|b|)$. Thus $|b \epsilon|<1$ and $\mid(b-\lambda / \epsilon \mid<1$. Moreover, by the hypotheses of Case $3, b \in$ and $(b-\lambda) \epsilon$ have the same sign. Thus, by (12) and (13),

$$
[m \mu]=[m \mu-\epsilon \lambda]=[(m \theta-\epsilon) \lambda]=[[m \theta] \lambda] .
$$

Therefore (1) has a solution with $n=[m \theta] . \quad$ Q.E.D.
Corollary 1. Let λ be a positive irrational. Then $[n \lambda]=\left[m \lambda^{2}\right]$ has no solution with $n, m \in \boldsymbol{Z}$ if and only if $\lambda=\left(b+\left(b^{2}+4 c\right)^{1 / 2}\right) / 2$ for some positive integers b and c.
Proof. Note that if $\mu \lambda=b \mu+c \lambda$ with $b, c \in \boldsymbol{Z}$ and $\lambda>b>0$, then $(\lambda-b)(\mu-c)=b c$, so that $c>0$. Hence Corollary 1 follows from the Theorem with $\mu=\lambda^{2}$. Q.E.D.
Corollary 2. Let λ be a positive irrational. Then $[n \lambda]=[m \lambda]+m$ has no solution with $n, m \in \boldsymbol{Z}$ if and only if

$$
\lambda=\left((b+c-1)+\left((b+c-1)^{2}+4 b\right)^{1 / 2}\right) / 2
$$

for some positive integers b and c.
Proof. This follows from the Theorem with $\mu=\lambda+1$.
Corollary 3. Let σ be a positive irrational. Then $[n \sigma]+n=[m / \sigma]+m$ has no solution with $n, m \in \mathbb{Z}$.

Proof. This follows from the Theorem with $\mu=1+1 / \sigma, \lambda=\sigma+1$, and $b=c=1$. Q.E.D.
(Corollary 3 is part of Problem 22 in [3, p. 84].)

REFERENCES

1. H. S. M. Coxeter, "The Golden Section, Phyllotaxis, and Wy thoff's Game," Scripta Mathematica 19 (1953), pp. 135-143.
2. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th Ed., Oxford, 1960.
3. I. Niven and H. Zuckerman, An Introduction to the The ory of Numbers, 3rd ed., Wiley, N. Y., 1972.

[Continued from page 149.]

*

For an ω-series with an arbitrary odd number of k_{i} parameters two cycles of parametric incrementation are required to bring the series into alignment for grouping. Use of the identity

$$
G(z)=\psi(z / 2+1 / 2)-\psi(z / 2),
$$

[4, p. 20], and Lemma 1 render the following summation expression.
The orem 2.

$$
\omega\left(j ; k_{1}, \cdots, k_{2 n+1}\right)=\sum_{i=0}^{2 n}(-1)^{i} \omega\left(j+s_{i} ; S\right)=(1 / 2 S) \sum_{i=0}^{2 n}(-1)^{i} G\left(\left(j+s_{i}\right) / S\right)
$$

3. EXAMPLES

Some calculations for the uniparameter ω-series are to be found in [1] and for the biparameter series in [2]. The above theorems and their proofs can be illustrated with the following triparameter ω-series:

$$
\begin{aligned}
\omega(1 ; 1,1,2)= & {[(1-1 / 2)+(1 / 3-1 / 5)+(1 / 6-1 / 7)]+[(1 / 9-1 / 10)+(1 / 11-1 / 13)+\ldots] } \\
& +[(1 / 17-1 / 18)+\ldots]+\ldots \\
= & (1-1 / 2)+(1 / 9-1 / 10)+(1 / 17-1 / 18)+\cdots+(1 / 3-1 / 5)+(1 / 11-1 / 13)+\ldots \\
& +(1 / 6-1 / 7)+\ldots \\
= & \omega(1 ; 1,7)+\omega(3 ; 2,6)+\omega(6 ; 1,7) \quad \\
= & (1 / 8)[G(3 / 4)-G(1 / 2)+G(1 / 4)] \\
= & (1 / 8)[\sqrt{2}(\pi-21 n(1+\sqrt{2})-\pi+\sqrt{2}(\pi+21 n(1+\sqrt{2}))] \\
= & (\pi / 8)[2 \sqrt{2}-1] .
\end{aligned}
$$

REFERENCES

1. B. J. Cerimele, "Extensions on a Theme Concerning Conditionally Convergent Series," Mathematics Mag., Vol. 40, No. 3, May, 1967.
2. B. J. Cerimele, "Summation of Generalized Harmonic Seires with Periodic Sign Distributions," Pi Mu EpsiIon Journal, Vol. 4, No. 8, Spring, 1968,
3. H. T. Davis, "Tables of Higher Mathematical Functions," The Principia Press, 1933.
4. A. Erdelyi (ed), Higher Transcendental Functions, Vol. 1, McGraw Hill, 1953.
5. W. Grobner and N. Hofreiter, Integraltafel, Vol. 1, Springer-Verlag, 1961.
6. J. B. W. Jolly, Summation of Series, Dover Publications, 1961.
