ON FIBON $4 C C I$ AND TRIANGULAR NUMBERS

W. E. GREIG
West Virginia University, Morgantown, West Virginia 26506

The infinite sequence discovered by the author in [1], namely the numerators of C_{k}, i.e.,

$$
\begin{equation*}
F_{2 k} C_{k}=\left(1+L_{k}+F_{2 k-1}\right) \tag{1}
\end{equation*}
$$

are related to the Triangular numbers $\left\{T_{n}\right\}$, where $T_{-1}=0=T_{0}$ and
(2) $\quad T_{n}=n(n+1) / 2$ for all integral n,
in general. It is interesting that four members of the sequence defined by $T_{-1+F_{n}}$ are zero, namely those for $n=-1,0,1,2$. It will be shown that
(3)

$$
F_{2 k} C_{k}=T_{1+F_{k+1}}+T_{-1+F_{k-2}}
$$

for all natural numbers k. The first term on the right-hand side merely picks off the $2,3,4,6,9^{\text {th }} \ldots$ terms of $\left\{T_{n}\right\}$.
Proof. The proof is direct and easy considering that (3) is not obvious. We first need

$$
\begin{equation*}
3 F_{k+1}-F_{k-2}=2 L_{k} \tag{4}
\end{equation*}
$$

which is easily derived from $F_{k+1}+F_{k-1}=L_{k}$. Next we need

$$
F_{k+1}^{2}=F_{2 k}+F_{k-1}^{2} \quad \text { and } \quad F_{k-1}^{2}=F_{2 k-3}-F_{k-2}^{2}
$$

which are $\left(I_{10}\right)$ and $\left(/_{11}\right)$ of Hoggatt [2] which enables us to write

$$
\begin{equation*}
F_{k+1}^{2}+F_{k-2}^{2}=2 F_{2 k-1} . \tag{5}
\end{equation*}
$$

First we write
$2 T_{1+F_{k+1}}+2 T_{-1+F_{k-2}}=\left(1+F_{k+1}\right)\left(2+F_{k+1}\right)+\left(-1+F_{k-2}\right) F_{k-2}=2+3 F_{k+1}+F_{k+1}^{2}+F_{k-2}^{2}-F_{k-2}$
which via (4) and (5) $\quad=2+2 L_{k}+2 F_{2 k-1}$
as was to be shown.
Table of $C_{k} F_{2 k}$ Numbers and Triangular Numbers

$\quad k$	0	1	2	3	4	5	6	7	8	9	10	11	12
$C_{k} F_{2 k}$	4	3	6	10	21	46	108	263	658	1674	4305	11146	28980
$T_{1+T_{k+1}}$	3	3	6	10	21	45	105	253	630	1596	4095	10585	27495
$T_{-1+F_{k-2}}$	1	0	0	0	0	1	3	10	28	78	210	561	1485

Now it would be nice if a generalization obtained for the generalized $C_{j, k}$ in the author's second paper on sums of Fibonacci reciprocals [3]. Such is the case. First we must define generalized Triangular numbers

$$
\begin{equation*}
T_{n, j}=n(n+j) / 2 \tag{6}
\end{equation*}
$$

which may not always be integers. Let $\left\{P_{n}\right\}$ be any generalized sequence such that

$$
\begin{equation*}
P_{n+1}=j P_{n}+P_{n-1} \tag{7}
\end{equation*}
$$

where j is an integer; then using the general Binet formula one can show that
(8)

$$
P_{2 n+1}=P_{n+1}^{2}+P_{n}^{2}
$$

and it definitely is equally obvious that we can show
(9)

$$
j P_{2 n}=P_{n+1}^{2}-P_{n-1}^{2}
$$

Using (8) and (9), we may show that

$$
\begin{equation*}
P_{k+1}^{2}+P_{k-2}^{2}=j P_{2 k}+P_{2 k-3}=\left(j^{2}+1\right) P_{2 k-1} \tag{10}
\end{equation*}
$$

which corresponds to (5) in the Fibonacci case. Now the author [3, (9)] has shown that the numerators of $C_{j k}$ are

$$
\begin{equation*}
P_{2 k} C_{j, k}=\left(1+P_{k}^{*}+P_{2 k-1}\right) \tag{11}
\end{equation*}
$$

The j subscript has been dropped from the P^{\prime} s for neatness but they are still a function of j and ideally we should write $P_{j, k}$,

Theorem.

$$
\begin{equation*}
\left(1+P_{k}^{*}+P_{2 k-1}\right)=\left(1+2 T_{P_{k, j}}+2 T_{P_{k-2}, 2}\right) \tag{12}
\end{equation*}
$$

The proof is straightforward and note that $P_{k}^{*}=P_{k+1}+P_{k-1}$ is by definition the Lucas complement of P_{k}. From (6) Eq. (12) becomes
(13) $\left(1+P_{k}\left(P_{k}+j\right)+P_{k-1}\left(P_{k-1}+2\right)=\left(1+j P_{k}+2 P_{k-1}+P_{k}^{2}+P_{k-1}^{2}\right)=\left(1+P_{k+1}+P_{k-1}+P_{2 k-1}\right)\right.$
by using (8). Note that we did not use (9) and that has led to (12) being different from (3). I illustrate this by taking $C_{3,4}=1309 / 3927$. Now $\left\{P_{3, k}\right\}$ is $0,1,3,10,33,109,360,1189, \ldots$. According to (11) and (12) the numerator of $C_{3,4}$ is $1+33(33+3)+10(10+2)=1309$ as it should. In (12) be careful to note that j and 2 are subscripts of T and not of P.
H. W. Gould has called my attention to a known theorem [4] that an integer m is the sum of two triangular numbers if and only if $4 m+1$ is the sum of two squares, say $4 m+1=u^{2}+v^{2}$, where $(u-v) \geqslant 3$. Hence for the sequence $G_{k}=\mathcal{C}_{k} F_{2 k}$ we have the following table.

k	$\left(1+4 C_{k} F_{2 k}\right)=\left(u^{2}+v^{2}\right)$		k	$\left(1+4 C_{k} F_{2 k}\right)=\left(u^{2}+v^{2}\right)$
	$17=4^{2}+1^{2}$		5	$185=8^{2}+11^{2}$
1	$13=2^{2}+3^{2}$		6	$433=12^{2}+17^{2}$
2	$25=4^{2}+3^{2}$		7	$1053=18^{2}+29^{2}$
3	$41=4^{2}+5^{2}$	8	$2633=28^{2}+43^{2}$	
4	$85=6^{2}+7^{2}$	9	$6697=44^{2}+69^{2}$	

We noticed that the differences between adjacent u numbers seems to be twice the Fibonacci numbers and that a similar relation holds for the v numbers. V. E. Hoggatt, Jr., in a letter dated Jan. 22, 1977, has found the following closed form.

$$
\begin{equation*}
1+4 G_{k}=1+4 C_{k} F_{2 k}=\left(2\left(1+F_{k-1}\right)\right)^{2}+\left(1+2 F_{k}\right)^{2}=u^{2}+v^{2} \tag{14}
\end{equation*}
$$

Now Sloane [5] contains the sequence $N^{2}+(N-1)^{2}$, his No. 1567, which generates a lot of primes. The sequence above may also be prime rich since 17, 13, 41, 433, 2633 are primes. Also G numbers for negative k values may be found in the recently submitted [6]. Then the sequence $\left(1+4 G_{-k}\right)$ for $k=0,1,2, \cdots$ gives: $17,9,37,41,169,317,1009,2329,6581, \ldots$ all of which are primes but 2329 and the perfect squares 9 and 169.

REFERENCES

1. W. E. Greig, "Sums of Fibonacci Reciprocals," The Fibonacci Quarterly, Vol. 15, No. 1 (Feb. 1977), pp. 46-48.
2. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin, 1969.
3. W. E. Greig, "On Sums of Fibonacci-Type Reciprocals," to appear, The Fibonacci Quarterly.
4. A. M. Vaidya, "On Representing an Integer as a Sum of Two Triangular Numbers," Vidya B (Gujarat University), 15(1972), No. 2, 104-105. MR 52(1976), Review No. 255.
5. N.J.A. Sloane, A Handbook of Integer Sequences, 1973, Academic Press, New York City.
6. W. E. Greig, "On Generalized $G_{j, k}=C_{j, k} P_{j, 2 k}$ Numbers," to appear.

为

