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PHI AGAIN: A RELATIONSHIP BETWEEN THE GOLDEN RATIO AND
THE LIMIT OF A RATIO OF MODIFIED BESSEL FUNCTIONS

HARVEY J. HINDIN
State University of New Y ork, Empire State College-Stony Brook University, Stony Brook, New York 11790

In his study of infinite continued fractions whose partial quotients form a general arithmetic progression,
D, H. Lehmer derived a formula for their evaluation in terms of modified Bessel Functions {1]. We have

(1) F(a;b) =apg+t '—7_ + ”L Foee = [‘701371 az, ]/
ay az

where a, = an + b. |t was shown that

(2) Flab) = L0

where a=h/a and /, is the modified Bessel function

> at2m
) lafe) = i™Jaliz) Z I iZI/fI}‘ (a+m+1) °

m=0

Using (1) and (2) with ca = 2/2 and b = ¢/2, we have

{4) Flab) = [b, a+b 2a+b, -] = lo-1lea)
1o f(ca)
Asa— o (a— 0}, in the limit (Theorem 5 of [1]),
lo-1fcal)
oMo I, (ca)
But, forb =1, {c = 2), F((,1) is the positive root of the quadratic equation

{6) 1+ 1=x
X

(5) = F0b) = [b b b ].

which is represented by the infinite continued fraction expansion [1, 1, 1, ---1.
[Continued on p. 152.]



