5．H．T．Engstrom，＂On Sequences Defined by Linear Recurrence Relations，＂Trans．Amer．Math．Soc．，Vol． 33 （1931），pp．210－218．
6．D．H．Lehmer，＂An Extended Theory of Lucas＇Functions，＂Annals of Math．（2），Vol． 30 （1929），pp．66－ 72.

7．Edouard Lucas，＂Theorie des Fonctions Numeriques Implement Periodiques，＂Amer．J．of Math．，Vol． 1 （1878），pp．184－240，289－321．
8．Morgan Ward，＂The Characteristic Number of a Sequence of Integers Satisfying a Linear Recursion Re－ Iation，＂Trans．Amer．Math．Soc．，Vol． 33 （1931），pp．153－165．
9．Morgan Ward，＂A Note on Divisbility Sequences，＂Bull．Amer．Math．Soc．，Vol． 42 （1936），pp．843－845．
10．H．C．Williams，＂A Generalization of the Lucas Functions，＂unpublished Ph．D．thesis，University of Waterloo，Ontario， 1969.
11．H．C．Williams，＂On a Generalization of the Lucas Functions，＂Acta Arith．，Vol． 20 （1972），pp．33－51．
12．H．C．Williams，＂Fibonacci Numbers Obtained from Pascal＇s Triangle with Generalizations，＂The Fibonacci Quarterly，Vol． 10 （1972），pp．405－412．

大 大 大

PHI AGAIN：A RELATIONSHIP BETWEEN THE GOLDEN RATIO AND THE LIMIT OF A RATIO OF MODIFIED BESSEL FUNCTIONS

HARVEY J．HINDIN

State University of New York，Empire State College－Stony Brook University，Stony Brook，New Y ork 11790

In his study of infinite continued fractions whose partial quotients form a general arithmetic progression， D．H．Lehmer derived a formula for their evaluation in terms of modified Bessel Functions［1］．We have

$$
\begin{equation*}
F(a, b)=a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots=\left[a_{0}, a_{1}, a_{2}, \cdots\right] \tag{1}
\end{equation*}
$$

where $a_{n}=a n+b$ ．It was shown that

$$
\begin{equation*}
F(a, b)=\frac{I_{\dot{\alpha}-1}(2 / a)}{I_{\alpha}(2 / a)}, \tag{2}
\end{equation*}
$$

where $a=b / a$ and I_{α} is the modified Bessel function

$$
\begin{equation*}
I_{\alpha}(z)=i^{-\alpha} J_{\alpha}(i z) \sum_{m=0}^{\infty} \frac{(z / 2)^{\alpha+2 m}}{\Gamma(m+1) \Gamma(a+m+1)} \tag{3}
\end{equation*}
$$

Using（1）and（2）with $c a=2 / a$ and $b=c / 2$ ，we have

$$
\begin{equation*}
F(a, b)=[b, a+b, 2 a+b, \cdots]=\frac{I_{\alpha-1}(c a)}{I_{\alpha}(c a)} . \tag{4}
\end{equation*}
$$

As $a \rightarrow \infty(a \rightarrow 0)$ ，in the limit（Theorem 5 of［1］），
（5）

$$
\lim _{\alpha \rightarrow \infty} \frac{I_{\alpha-1}(c a)}{I_{\alpha}(c a)}=F(0, b)=[b, b, b, \cdots] .
$$

But，for $b=1,(c=2), F(0,1)$ is the positive root of the quadratic equation

$$
\begin{equation*}
1+\frac{1}{x}=x \tag{6}
\end{equation*}
$$

which is represented by the infinite continued fraction expansion $[1,1,1, \cdots]$ ．
［Continued on p．152．］

