$$
U_{(p-1) / 2 g} \equiv 0(\bmod p) \quad \text { and } \quad(-c)^{(p-1) / 2 g} \equiv 1(\bmod p),
$$

then $k(H, p)=2(p-1) / g$.
Proof. Let us use (13) to obtain

$$
U_{(p-1) / g} \equiv 0(\bmod p) \quad \text { and } \quad U\{(p-1) / g\}+1 \equiv-1(\bmod p)
$$

Then it is easy to show that

$$
\begin{equation*}
U_{2(p-1) / g} \equiv 0(\bmod p) \quad \text { and } \quad U\{2(p-1) / g\}+1 \equiv(\bmod p) \tag{17}
\end{equation*}
$$

when we get
(18)

$$
H_{2(p-1) / g} \equiv Q(\bmod p) \quad \text { and } \quad H\{2(p-1) / g\}+1 \equiv P(\bmod p)
$$

and the desired result follows.
Analogously, we state the following theorems.
Theorem g. For primes of the form $2 g(2 t+1)-1$, where $t \equiv h(\bmod 10)$ and $4 g h+2 g-1 \equiv \pm 3(\bmod$ 10), if

$$
U\{(p+1) / 2 g\}+1+c U\{(p+1) / 2 g\}-1 \equiv 0(\bmod p) \quad \text { and } \quad c^{(p+1) / 2 g} \equiv 1(\bmod p),
$$

then $k(H, p)=(p+1) / g$.
Theorem h. For primes of the form $4 g t-1$, where $t \equiv h(\bmod 10)$ and $4 g h-1 \equiv \pm 3(\bmod 10)$, if

$$
U_{(p+1) / 2 g} \equiv 0(\bmod p) \quad \text { and } \quad(-c)^{(p+1) / 2 g} \equiv 1(\bmod p) \text {, }
$$

then $k(H, p)=(p+1) / g$.
The orem i. For primes of the form $2 g(2 t+2)-1$, where $t \equiv h(\bmod 10)$ and $4 g+4 g h-1 \equiv \pm 3(\bmod$ p), if

$$
U\{(p+1) / 2 g\}-1+c U\{(p+1) / 2 g\}-1 \equiv 0(\bmod p) \quad \text { and } \quad(-c)^{(p+1) / 2 g} \equiv 1(\bmod p)
$$

then $k(H, p)=2(p+1) / g$.
Theorem j. For primes of the form $2 g(2 t+1)-1$, where $t \equiv h(\bmod 10)$ and $4 g h+2 g-1 \equiv \pm 3(\bmod 10)$, if

$$
H(p+1) / 2 g \equiv 0(\bmod p) \quad \text { and } \quad(-c)^{(p+1) / 2 g} \equiv 1(\bmod p) \text {, }
$$

then $k(H, p)=2(p+1) / g$.
The proofs for Theorems g -j are left to the reader.

REFERENCES

1. C. C. Yalavigi, "On the Periodic Lengths of Fibonacci Sequence Modulo p," The Fibonacci Quarterly, to appear.
2. C. C. Yalavigi, "A Further Generalization of Fibonacci Squence," The Fibonacci Quarterly, to appear.

[Continued from page 112.]

Therefore,
(7)

$$
F(0,1)=[1,1,1, \cdots]=\frac{1+\sqrt{4+1}}{2}
$$

or
(8)

$$
\lim _{\alpha \rightarrow \infty} \frac{I_{\alpha-1}(2 a)}{I_{\alpha}(2 a)}=\frac{1+\sqrt{5}}{2}=\phi \text { (the "golden" ratio). }
$$

Expressing ϕ in this manner as the limit of a ratio of modified Bessel Functions appears to be new [2].
REFERENCES

1. D.H. Lehmer, "Continued Fractions Containing Arithmetic Progressions," Scripta Mathematica, Vol. XXIX, No.s 1-2, Spring-Summer 1973, pp. 17-24.
2. D. H. Lehmer, Private Communication.
