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Ufp-1)/2g = 0 (modp) and (~c)P~1)729 — 4 (mod p),
then k(H,p) = 2(p — 1)/g.
Proof. Letus use (13) to obtain
Up-1)g =0 (modp) and U{(p-])/g}+7 = —1 (modp).
Then it is easy to show that

(17) Uz(p-1)/g = 0 (mod p) and Uloto-1)/g}+1 = (mod p)
when we get
(18) H2(p-1)/g = Q@ (mod p) and H{g(p_7)/g}+7 = P (modp)

and the desired result follows.
Analogously, we state the following theorems.

Theorem g.  For primes of the form 2g(2¢ + 1) — 1, where t =h (mod 10) and 4gh + 29 — 1 =43 (mod
10), if
! U{o+1)/26)+1+6U {fp+1)/2g)-1 = 0 (modp) and  cP*7729 = 1 (mod p),
then k(H,p) = (p + 1)/g.
Theorem b. For primes of the form 4gt — 1, where t = (mod 10) and 4gh — 7 =23 (mod 10), if
Up+1)/29 = 0 (modp)  and (=c)P*129 = 1 (mod p),
then k(Hp) = (p + 1)/
Theorem i. For primes of the form 2g(2t + 2) — 1, where t =h (mod 10) and 4g +4gh — 1 =+3 (mod
,if
" U{(o+1)/2g)-1*¢U {(p+1)/2g)}-1 = 0 (mod p)  and (~¢)P*1)729 = 1 (mod p),
then k(H,p) = 2(p + 1)/y.
Theorem j. Forprimes of the form 2g(2¢ + 1) — 1, where t =h (mod 10) and 4gh + 29 — 1 =£3 (mod 10),

if
Hp+1)/2g = 0 (modp) and (—c)P*1)29 = 1 (mod p),

then k(H,p) = 2(p + 1)/y.
The proofs for Thearems g—j are left to the reader.
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Therefore, R
(7) FlO.1) = 11,11, ] = 1221
or
(8) Lim_ /70:;2(;;1} = 7+2‘/§ = ¢ (the “golden” ratio) .
Expressing ¢ in this manner as the limit of a ratio of modified Bessel Functions appears to be new [2].
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