FIBONACCI CONVOLUTION SEOUENCES

V. E. HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON

San Jose State University, San Jose, California 95129

The : Fibonacci convolution sequences $\left\{F_{n}^{(r)}\right\}$ which arise from convolutions of the Fibonacci sequence $\left\{1,1,2,3,5,8, \cdots, F_{n}, \ldots\right\}$ lead to some new Fibonacci identities, limit theorems, and determinant identities.

1. THE FIBONACCI CONVOLUTION SEQUENCES

Let the $r^{\text {th }}$ Fibonacci convolution sequence be denoted $\left\{F_{n}^{(r)}\right\}$; note that $F_{n}^{(0)}=F_{n}$, the $n^{\text {th }}$ Fibonacci number. Then

$$
\begin{align*}
& F_{n}^{(1)}=\sum_{i=0}^{n} F_{n-i} F_{i} \tag{1.1}\\
& F_{n}^{(r)}=\sum_{i=0}^{n} F_{n-i}^{(r-1)} F_{i} \tag{1.2}
\end{align*}
$$

However, there are some easier methods of calculation.
Let the Fibonacci polynomials $F_{n}(x)$ be defined by

$$
\begin{equation*}
F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x), \quad F_{0}(x)=0, \quad F_{1}(x)=1 . \tag{1.3}
\end{equation*}
$$

Then, since $F_{n}(1)=F_{n}$, the recursion relation for the Fibonacci numbers, $F_{n+2}=F_{n+1}+F_{n}$, follows immediately by taking $x=1$. In a similar manner we may write recursion relations for $\left\{F_{n}^{(r)}\right\}$.
From (1.3), taking the first derivative we have

$$
F_{n+2}^{\prime}(x)=x F_{n+1}^{\prime}(x)+F_{n}^{\prime}(x)+F_{n+1}(x)
$$

Since $F_{n}^{\prime}(1)=F_{n}^{(1)}$, taking $x=1$ gives us the recursion relation for $\left\{F_{n}^{(1)}\right\}$,

$$
\begin{equation*}
F_{n+2}^{(1)}=F_{n+1}^{(1)}+F_{n}^{(1)}+F_{n+1} . \tag{1.4}
\end{equation*}
$$

Since the generating function for the Fib onacci polynomials is

$$
\begin{equation*}
\frac{Y}{1-x Y-Y^{2}}=\sum_{n=1}^{\infty} F_{n}(x) Y^{n} \tag{1.5}
\end{equation*}
$$

while the generating function for the Fibonacci convolution sequences is

$$
\begin{equation*}
\left(\frac{x}{1-x-x^{2}}\right)^{r+1}=\sum_{n=1}^{\infty} F_{n}^{(r)} x^{n} \tag{1.6}
\end{equation*}
$$

it is easy to see that

$$
\begin{equation*}
F_{n}^{(r)}=F_{n}^{(r)}(1) / r! \tag{1.7}
\end{equation*}
$$

where $F_{n}^{(r)}(x)$ is the $r^{\text {th }}$ derivative of the Fibonacci polynomial $F_{n}(x)$. Thus we can write

$$
\begin{equation*}
F_{n+2}^{(r+1)}=F_{n+1}^{(r+1)}+F_{n}^{(r+1)}+F_{n+1}^{(r)} \text {. } \tag{1.8}
\end{equation*}
$$

which enables us to make the following table with a minimum of effort.
We can extend our sequences for negative subscripts to write

$$
\begin{equation*}
F_{-n}^{(r)}=(-1)^{n+1} F_{n}^{(r)} \tag{1.9}
\end{equation*}
$$

n	F_{n}	$F_{n}^{(1)}$	$F_{n}^{(2)}$	$F_{n}^{(3)}$	$F_{n}^{(4)}$	\ldots
0	0	0	0	0	0	\ldots
1	1	0	0	0	0	\ldots
2	1	1	0	0	0	\ldots
3	2	2	1	0	0	\ldots
4	3	5	3	1	0	\ldots
5	5	10	9	4	1	\ldots
6	8	20	22	14	5	\ldots
7	13	38	51	40	20	\ldots
8	21	71	111	105	65	\ldots
9	34	130	233	256	190	\ldots
10	55	235	474	594	511	\ldots
\ldots						

where we note that $\left\{F_{n}^{(r)}\right\}$ has $2 r+1$ zeros, and $F_{r+1}^{(r)}=1, F_{r+2}^{(r)}=r$.
Equation (1.9) can be established for $r=1$ quite easily by induction. Assume that (1.9) holds for $1,2,3, \ldots$, r, and for $r+1$ for $n=1,2, \cdots, k$. Then by (1.8)

$$
\begin{aligned}
F_{k+1}^{(r+1)} & =F_{k}^{(r+1)}+F_{k-1}^{(r+1)}+F_{k}^{(r)}=(-1)^{k+1} F_{-k}^{(r+1)}+(-1)^{k} F_{-k+1}^{(r+1)}+(-1)^{k+1} F_{-k}^{(r)} \\
& =(-1)^{k+2}\left[F_{-k+1}^{(r+1)}-F_{-k}^{(r+1)}-F_{-k}^{(r)}\right]=(-1)^{k+2} F_{-k-1} .
\end{aligned}
$$

which is equivalent to (1.9) for $n=k+1$, finishing a proof by induction.
Returning to (1.6), recall that the recurrence relation for $\left\{F_{n}^{(1)}\right\}$ has auxiliary polynomial $\left(x^{2}-x-1\right)^{2}$, whose roots are, of course, a, a, β, β, where $a=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$. Then,

$$
\begin{equation*}
F_{n}^{(1)}=(A+B n) a^{n}+(C+D n) \beta^{n} \tag{1.10}
\end{equation*}
$$

for some constants A, B, C and D due to the repeated roots. Since the Fibonacci numbers are a linear combination of the same roots,
(1.11) $\quad F_{n}^{(1)}=\left(A^{*}+B^{*} n\right) F_{n+1}+\left(C^{*}+D^{*} n\right) F_{n-1}$
for some constants A^{*}, B^{*}, C^{*}, and D^{*}. By letting $n=0,1,2,3$ and solving the resulting system of equations, one finds $A^{*}=-1 / 5, B^{*}=C^{*}=D^{*}=1 / 5$, resulting in
(1.12)

$$
5 F_{n}^{(1)}=(n-1) F_{n+1}+(n+1) F_{n-1}
$$

which leads easily to
(1.13)

$$
F_{n}^{(1)}=\left(n L_{n}-F_{n}\right) / 5
$$

where L_{n} is the $n^{\text {th }}$ Lucas number.
Returning again to the auxiliary polynomial for $\left\{F_{n}^{(1)}\right\}$, since $\left(x^{2}-x-1\right)^{2}=x^{4}-2 x^{3}-x^{2}+2 x+1$, we can write

$$
\begin{equation*}
F_{n+4}^{(1)}=2 F_{n+3}^{(1)}+F_{n+2}^{(1)}-2 F_{n+1}^{(1)}-F_{n}^{(1)} \tag{1.14}
\end{equation*}
$$

2. SPECIAL LIMITING RATIOS

It is well known that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=a=\frac{1+\sqrt{5}}{2} \tag{2.1}
\end{equation*}
$$

We extend this property of the Fibonacci numbers to the Fibonacci convolution sequences. First, (1.10) gives us

$$
F_{n}^{(1)}=(A+B n) a^{n}+(C+D n) \beta^{n}
$$

for some constants A, B, C and D. Thus one concludes

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}^{(1)}}{F_{n}^{(1)}}=\lim _{n \rightarrow \infty} \frac{[A+B(n+1)] a+[C+D(n+1)] \beta](\beta / a)^{n}}{A+B n+(C+D n)(\beta / a)^{n}}=a .
$$

Clearly, this holds for any $\left\{F_{n}^{(r)}\right\}$ since, by examining the auxiliary polynomial,

$$
\begin{equation*}
F_{n}^{(r)}=p_{r}(n) a^{n}+q_{r}(n) \beta^{n}, \tag{2.2}
\end{equation*}
$$

where $p_{r}(n)$ and $q_{r}(n)$ are polynomials in n of degree r. Then, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{F_{n+1}^{(r)}}{F_{n}^{(r)}}=\lim _{n \rightarrow \infty} \frac{p_{r}(n+1) a^{n+1}+q_{r}(n+1) \beta^{n+1}}{p_{r}(n) a^{n}+q_{r}(n) \beta^{n}}=\lim _{n \rightarrow \infty} \frac{p_{r}(n+1)}{p_{r}(n)} a=a \tag{2.3}
\end{equation*}
$$

While it is not necessary to be able to write $p_{r}(n)$ and $q_{r}(n)$ to establish (2.3), it would be interesting to find a recurrence for these polynomials.
It is not difficult to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{F_{n}}{F_{n}^{(1)}}=0 \tag{2.4}
\end{equation*}
$$

and that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{F_{n}^{\left(r^{*}\right)}}{F_{n}^{(r)}}=0, \quad r^{*}<r \tag{2.5}
\end{equation*}
$$

We also find a^{2} as a value for a special limiting ratio. We define

$$
\begin{equation*}
W_{n}^{(r)}=F_{n+1}^{(r)} F_{n-1}^{(r)}-\left[F_{n}^{(r)}\right]^{2} . \tag{2.6}
\end{equation*}
$$

For $r=0$, the Fibonacci numbers themselves, $W_{n}^{(0)}=(-1)^{n}$, but when $r \geqslant 1, W_{n}^{(r)}$ is not a constant. However, we have the surprising limiting ratio,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{W_{n+1}^{(r)}}{W_{n}^{(r)}}=a^{2}, \quad r \geqslant 1 \tag{2.7}
\end{equation*}
$$

To establish (2.7), we use (2.2) to calculate $W_{n}^{(r)}$ as

$$
\begin{aligned}
W_{n}^{(r)}= & {\left[p_{r}(n+1) a^{n+1}+q_{r}(n+1) \beta^{n+1}\right]\left[p_{r}(n-1) a^{n-1}+q_{r}(n-1) \beta^{n-1}\right]-\left[p_{r}(n) a^{n}+q_{r}(n) \beta^{n}\right]^{2} } \\
= & {\left[p_{r}(n+1) p_{r}(n-1) a^{2 n}+q_{r}(n+1) q_{r}(n-1) \beta^{2 n}+p_{r}(n+1) q_{r}(n-1) a^{n+1} \beta^{n-1}\right.} \\
& \left.+p_{r}(n-1) q_{r}(n+1) a^{n-1} \beta^{n+1}\right]-\left[p_{r}^{2}(n) a^{2 n}+2 p_{r}(n) q_{r}(n) a^{n} \beta^{n}+q_{r}^{2}(n) \beta^{2 n}\right] \\
= & {\left[p_{r}(n+1) p_{r}(n-1)-p_{r}^{2}(n)\right] a^{2 n}+\left[q_{r}(n+1) q_{r}(n-1)-q_{r}^{2}(n)\right] \beta^{2 n}+R_{r}(n), }
\end{aligned}
$$

where $R_{r}(n)$ is a polynomial in n of degree $2 r$, but each term contains a factor of a^{s} or β^{t}, where s, t are at most two, since $a \beta=-1$. Then, if $p_{r}(n+1) p_{r}(n-1)-p_{r}^{2}(n) \neq 0$, we find that

$$
\lim _{n \rightarrow \infty} \frac{W_{n+1}^{(r)}}{W_{n}^{(r)}}=\frac{F_{n+2}^{(r)} F_{n}^{(r)}-\left[F_{n+1}^{(r)}\right]^{2}}{F_{n+1}^{(r)} F_{n-1}^{(r)}-\left[F_{n}^{(r)}\right]^{2}}=a^{2} .
$$

Please note that for the Fibonacci numbers themselves, it is indeed true that $p=-q=1 /(a-\beta)$ and

$$
p(n+1) p(n-1)-p^{2}(n) \equiv 0
$$

That there are no other polynomials such that $p(n+1) p(n-1)-p^{2}(n) \equiv 0$ is proved by considering

$$
F_{n}^{(r)}=p_{r}(n) a^{n}+q_{r}(n) \beta^{n},
$$

where $p_{r}(n)$ is a polynomial of degree at most r. Consider

$$
P(n)=p_{r}(n+i) p_{r}(n-1)-p_{r}^{2}(n)
$$

which is a polynomial of degree at most $2 r$. Thus, $P(n) \neq 0$ for more than $2 r$ values of n. Clearly, then, for all large enough $n, P(n) \neq 0$.

3. DETERMINANT IDENTITIES FOR THE FIBONACCI CONVOLUTION SEQUENCES

Several interesting determinant identities can be found for the Fibonacci convolution sequences. First, we examine a class of unit determinants. Let

$$
D_{n}=\left|\begin{array}{cccc}
F_{n+3}^{(1)} & F_{n+2}^{(1)} & F_{n+1}^{(1)} & F_{n}^{(1)} \tag{3.1}\\
F_{n+2}^{(1)} & F_{n+1}^{(1)} & F_{n}^{(1)} & F_{n-1}^{(1)} \\
F_{n+1}^{(1)} & F_{n}^{(1)} & F_{n-1}^{(1)} & F_{n-2}^{(1)} \\
F_{n}^{(1)} & F_{n-1}^{(1)} & F_{n-2}^{(1)} & F_{n-3}^{(1)}
\end{array}\right|
$$

Then it is easily proved that $D_{n}=1$ by using (1.14), since replacing the fourth column with a linear combination of the present columns gives us the negative of the first column of D_{n+1}. That is, since

$$
\begin{aligned}
-F_{n+4}^{(1)} & =-2 F_{n+3}^{(1)}-F_{n+2}^{(1)}+2 F_{n+1}^{(1)}+F_{n}^{(1)}, \\
D_{n} & =\left|\begin{array}{cccc}
F_{n+3}^{(1)} & F_{n+2}^{(1)} & F_{n+1}^{(1)} & -F_{n+4}^{(1)} \\
F_{n+2}^{(1)} & F_{n+1}^{(1)} & F_{n}^{(1)} & -F_{n+3}^{(1)} \\
F_{n+1}^{(1)} & F_{n}^{(1)} & F_{n-1}^{(1)} & -F_{n+2}^{(1)} \\
F_{n}^{(1)} & F_{n-1}^{(1)} & F_{n-2}^{(1)} & -F_{n+1}^{(1)}
\end{array}\right|,
\end{aligned}
$$

so that $D_{n}=D_{n+1}$ after making appropriate column exchanges. Lastly, since $D_{1}=1, D_{n}=1$ for all n.
Now, let $D_{n}^{(r)}$ be the determinant of order $(2 r+2)$ with successive members of the sequence $\left\{F_{n}^{(r)}\right\}$ written along its rows and columns in decreasing order such that $F_{n}^{(r)}$ appears everywhere along the minor diagonal. Since $\left\{F_{n}^{(r)}\right\}$ has an auxiliary polynomial of degree $(2 r+2), F_{n+2 r+2}^{(r)}$ is a linear combination of

$$
F_{n+2 r+1}^{(r)}, \quad F_{n+2 r}^{(r)}, \quad F_{n+2 r-1}^{(r)}, \cdots, F_{n+1}^{(r)}, F_{n}^{(r)}
$$

so that $D_{n}^{(r)}= \pm D_{n+1}^{(r)}$ after $(2 r+1)$ appropriate column exchanges. The auxiliary polynomial $\left(x^{2}-x-1\right)^{r+1}$ has a positive constant term when r is odd, making the last column the negative of the first column of $D_{n+1}^{(r)}$, so that

$$
D_{n}^{(r)}=(-1)^{2 r+1}(-1) D_{n+1}^{(r)}=D_{n+1}^{(r)}, r \text { odd; }
$$

but, for r even, a negative constant term makes the last column equal the first column of $D_{n+1}^{(r)}$, and

$$
D_{n}^{(r)}=(-1)^{2 r+1} D_{n+1}^{(r)}=-D_{n+1}^{(r)}, r \text { even. }
$$

We need only to evaluate $D_{n}^{(r)}$ for one value of n, then. Now, $F_{n}^{(r)}=0$ for $n=0, \pm 1, \pm 2, \cdots, \pm r$, and $F_{r+1}^{(r)}=1$. Thus, $D_{r+1}^{(r)}=(-1)^{r+1}$ since ones appear on the minor diagonal there with zeroes everywhere below. Then, $D_{n}^{(r)}=1$ when r is odd, and $D_{n}^{(r)}=(-1)^{n}$ when r is even, which can be combined to

$$
\begin{equation*}
D_{n}^{(r)}=(-1)^{n(r+1)} \tag{3.2}
\end{equation*}
$$

The special case $r=0$ is the well known formula, $F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}$.
A second proof of (3.2) is instructive. Returning to (3.1), apply (1.8) as

$$
\begin{equation*}
F_{n+1}^{(r)}=F_{n+2}^{(r+1)}-F_{n+1}^{(r+1)}-F_{n}^{(r+1)} \tag{3.3}
\end{equation*}
$$

taking $r=0$. Subtracting pairs of columns and then pairs of rows gives

$$
D_{n}=\left|\begin{array}{llll}
F_{n+2} & F_{n+1} & F_{n+1}^{(1)} & F_{n}^{(1)} \\
F_{n+1} & F_{n} & F_{n}^{(1)} & F_{n-1}^{(1)} \\
F_{n} & F_{n-1} & F_{n-1}^{(1)} & F_{n-2}^{(1)} \\
F_{n-1} & F_{n-2} & F_{n-2}^{(1)} & F_{n-3}^{(1)}
\end{array}\right|=\left|\begin{array}{rrrr}
0 & 0 & F_{n} & F_{n-1} \\
0 & 0 & F_{n-1} & F_{n-2} \\
F_{n} & F_{n-1} & F_{n-1}^{(1)} & F_{n-2}^{(1)} \\
F_{n-1} & F_{n-2} & F_{n-2}^{(1)} & F_{n-3}^{(1)}
\end{array}\right| .
$$

Thus,

$$
D_{n}=\left(F_{n} F_{n-2}-F_{n-1}^{2}\right)^{2}=1
$$

Notice that this proof can be generalized, and after sufficient subtractions, one always makes a block of zeroes in the upper left, with two smaller determinants of the same form in the lower left and upper right, so that $D_{n}^{(r)}$ is always a product of smaller known determinants $D_{n}^{\left(r^{*}\right)}, r^{*}<r$, making a proof by induction possible. Each higher order determinant requires more subtractions of pairs of rows and columns, but careful counting of subscripts leads one to

$$
D_{n}^{(r)}=\left\{\begin{array}{l}
{\left[D_{n}^{(r / 2)}\right] \cdot\left[D_{n}^{((r-2) / 2)}\right], r \text { even } ;} \tag{3.4}\\
{\left[D_{n}^{((r-1) / 2)}\right]^{2}, r \text { odd } ;}
\end{array}\right.
$$

which again gives us (3.2).
The process of subtraction of pairs of columns and rows can also be applied to determinants of odd order. For example,

$$
D_{n}^{*}=\left|\begin{array}{lll}
F_{n+2}^{(1)} & F_{n+1}^{(1)} & F_{n}^{(1)} \\
F_{n+1}^{(1)} & F_{n}^{(1)} & F_{n-1}^{(1)} \\
F_{n}^{(1)} & F_{n-1}^{(1)} & F_{n-2}^{(1)}
\end{array}\right|=\left|\begin{array}{ccc}
0 & F_{n} & F_{n-1} \\
F_{n} & F_{n}^{(1)} & F_{n-1}^{(1)} \\
F_{n-1} & F_{n-1}^{(1)} & F_{n-2}^{(1)}
\end{array}\right| .
$$

Then, by applying (1.13) and known Fibonacci and Lucas identities, one can evaluate D_{n}^{*}. The algebra, however, is long and inelegant. One obtains, after patience,

$$
\begin{equation*}
D_{n}^{*}=(-1)^{n+1} F_{n}^{(1)} \tag{3.5}
\end{equation*}
$$

However, D_{n}^{*} can also be written out from the form given above on the right, so that

$$
\begin{aligned}
D_{n}^{*}=(-1)^{n+1} F_{n}^{(1)} & =2 F_{n} F_{n-1} F_{n-1}^{(1)}-F_{n-1}^{(2)} F_{n}^{(1)}-F_{n}^{2} F_{n-1}^{(1)} \\
{\left[(-1)^{n-1}+F_{n-1}^{2}\right] F_{n}^{(1)} } & =2 F_{n} F_{n-1}\left[F_{n}^{(1)}-F_{n-2}^{(1)}-F_{n-1}\right]-F_{n}^{2} F_{n-2}^{(1)} \\
{\left[\left(F_{n-1} F_{n}-F_{n-1}^{2}\right)+F_{n-1}^{2}-2 F_{n} F_{n-1}\right] F_{n}^{(1)} } & =\left(-2 F_{n} F_{n-1}-F_{n}^{2}\right) F_{n-2}^{(1)}-2 F_{n} F_{n-1}^{2} \\
-F_{n} L_{n-2} F_{n}^{(1)} & =-F_{n} L_{n} F_{n-2}^{(1)}-2 F_{n} F_{n-1}^{2}
\end{aligned}
$$

by applying known Fibonacci identities. Finally, dividing by $-F_{n}, n \neq 0$ and rearranging, we have

$$
\begin{equation*}
L_{n-2} F_{n}^{(1)}-L_{n} F_{n-2}^{(1)}=2 F_{n-1}^{2} \tag{3.6}
\end{equation*}
$$

which we compare with the known

$$
L_{n-2} F_{n}-L_{n} F_{n-2}=2(-1)^{n}
$$

If we let $D_{n}^{*}(r)$ denote the determinant of order $(2 r+1)$ which has successive members of the sequence $\left\{F_{n}^{(r)}\right\}$ written along its rows and columns in decreasing order such that $\left\{F_{n}^{(r)}\right\}$ appears everywhere along the minor diagonal, we conjecture that

$$
\begin{equation*}
D_{n}^{*(r)}=(-1)^{r(n+1)} F_{n}^{(r)} \tag{3.7}
\end{equation*}
$$

Equation (3.7) has been proved for $r=1$ above, and $r=0$ is trivial. When $r=2$, it is possible to prove (3.7) by using the identity
(3.8)

$$
F_{n}^{(2)}=\left[\left(5 n^{2}-2\right) F_{n}-3 n L_{n}\right] / 50
$$

as well as (1.13). The algebra, however, is horrendous. The identity (3.8) can be derived by solving for the constants A, B, C, D, E, and F in

$$
F_{n}^{(2)}=\left(A+B n+C n^{2}\right) F_{n}+\left(D+E n+F n^{2}\right) L_{n}
$$

which arises since $\left\{F_{n}^{(2)}\right\}$ has auxiliary polynomial $\left(x^{2}-x-1\right)^{3}$, wh ose roots are a, a, a and β, β, β.
Two other determinant identities follow without proof.

$$
\begin{aligned}
& \left|\begin{array}{lll}
F_{n+2}^{(1)} & F_{n+1}^{(1)} & F_{n-1}^{(1)} \\
F_{n+1}^{(1)} & F_{n}^{(1)} & F_{n-2}^{(1)} \\
F_{n}^{(1)} & F_{n-1}^{(1)} & F_{n-3}^{(1)}
\end{array}\right|=(-1)^{n}\left[F_{n-5}^{(1)}+2 F_{n-4}\right] \\
& \left|\begin{array}{lll}
F_{n+2}^{(1)} & F_{n}^{(1)} & F_{n-1}^{(1)} \\
F_{n+1}^{(1)} & F_{n-1}^{(1)} & F_{n-2}^{(1)} \\
F_{n}^{(1)} & F_{n-2}^{(1)} & F_{n-3}^{(1)}
\end{array}\right|=(-1)^{n}\left[F_{n-2}^{(1)}-F_{n-2}\right]
\end{aligned}
$$

TWO RECURSION RELATIONS FOR $\boldsymbol{F}(\boldsymbol{F}(n))$

EDWARD A. PARBERRY
 Well's College, Aurora, New York 13026

Some time ago, in [1], the question of the existence of a recursion relation for the sequence of Fibonacci numbers with Fibonacci numbers for subscripts was raised. In the present article we give a $6{ }^{\text {th }}$ order non-linear recursion for $f(n)=F(F(n))$.

Proposition. Let $f(n)=F(F(n))$, where $F(n)$ is the $n^{\text {th }}$ Fibonacci number, then $f(n)=\left(5 f(n-2)^{2}+(-1)^{F(n+1)}\right) f(n-3)+(-1)^{F(n)}\left(f(n-3)-(-1)^{F(n+1)} f(n-6) f f(n-2) / f(n-5)\right.$.
Remark. Identity (1) below is given in [2], and identity (2) is proved similarly. Note also that $a \equiv b(\bmod$ 3) implies that

$$
(-1)^{F(a)}=(-1)^{F(b)}=(-1)^{L(a)}=(-1)^{L(b)},
$$

which is used frequently.

$$
\begin{align*}
& F(a+b)=F(a) L(b)-(-1)^{b} F(a-b) \tag{1}\\
& 5 F(a) F(b)=L(a+b)-(-1)^{a} L(b-a) .
\end{align*}
$$

Proof of Proposition. In (1), let $a=F(n-2), b=F(n-1)$ to obtain

$$
\begin{aligned}
f(n) & =f(n-2) L(F(n-1))-(-1)^{F(n-1)} F(-F(n-3)) \\
& =f(n-2) L(F(n-1))-(-1)^{F(n-1)}(-1)^{F(n-3)+1} f(n-3) \\
& =f(n-2) L(F(n-1))+(-1)^{F(n+1)} f(n-3) .
\end{aligned}
$$

[Continued on page 139.]

