
GENERALIZED LUCAS SEQUENCES 

VERNER E. HOGGATT, JR., and MARJORIE BICKNELL-JQHNSON 
San Jose State University, San Jose, California 95192 

1. INTRODUCTION 
In working with linear recurrence sequences, the generating functions jre of the form 

(1.D «£{= £ anxn , 
P(X) n=0 

where pfx) is a polynomial and qfx) is a polynomial of degree smaller thanp(x). In multisecting the sequence 
[an] it is necessary to find polynomialsP(x) whose roots are the kth power of the roots of pfx). Thus, we are 
led to the elementary symmetric functions. 

Let 
n 

(1.2) pfx) = n (x-a-,) = xn-Plx
n-1 +p2x

n-2-p3Xn-3 + -<' + (-1)kpkx
n-k + --- + (-1)npn, 

i=1 

wherepk is the sum of products of the roots taken k at a time. The usual problem is, given the polynomial p(x), 
to find the polynomial Pfx) whose roots are the kth powers of the roots of pfx), 

(1.3) Pfx) = xn-P1x
n-1+P2x

n-2-P3x
n-3+-* + f-1)nPn. 

There are two basic problems here. Let 

(1.4) Sk = ak
1+ak

2 + ak
3 + --- + ak , 

where 
pfx) = fx - aj)(x - a2) -"fx - an) = xn +CfXn~1 +C2Xn~ + - + cn 

andck = f-1)kPk-tnen Newton's Identities (see Conkwright [1]) 

S1+c1 = 0 

S2+S1c1+2c2 = 0 

(1.5) 
Sn+Sn-1c1 + - + S1cn-1+ncn = 0 

Sn+1 + Snc / + - + S]Cn + fn + 1)cn+1 = 0 

can be used to compute Sk for S7/ S2, — , Sn..UQ\N, once these first n values are obtained, the recurrence 
relation 
(1.6) Sn+1 + Snc7 + Sn.1c2 + ••• + S7cn = 0 

will allow one to get the next value Sn+i and all subsequent values o f £ m are determined by recursion. 
Returning now to the polynomial Pfx), 

(1.7) Pfx) = fx - a^Hx - ak
2)(x - ak

3) ~(x - ak
n) = xn + Q1x

n~1 + Q2x
n'2 + - + Qn , 

where 
0/ = a ^ a ^ - + aj = Sk 

and it is desired to find the Q j, Q2, Q3, ••-, Qn. Clearly, one now uses the Newton identities (1.5) again, since 
$k* $2k> $3k' '" f $nk c a n De found from the recurrence for Sm, where we knowS^-, S2kf S3k, —, Snk and 
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wish to find the recurrence for the /r-sected sequence. Before, we had the auxiliary polynomial f o rS m and com-
puted the Sj,S2, —, Sn. Here, we have Si<tS2kr ~*,Snk a n^ w ' s n t 0 calculate the coefficients of the auxiliary 
polynomial P(x). Given a sequence Sm and that it satisfies a linear recurrence of order n, one can use Newton's 
identities to obtain that recurrence. This requires only t h a t S y , ^ , S3, —, Sn be known. If 

Sn+i + (S!
nc1+Sn-iC2 + -~ + S1cn) + (n + 1)cn+1 = 0 

is used, then Sn+j = -(Sncj + — + S]Cn) andcn+j = 0. 
Suppose that we know that L1f L2, L3,14, —, the Lucas sequence, satisfies a linear recurrence of order two. 

Then L-j +c-j = 0yieldsCf = -1; L2 + L^cj +2c2= 0yieldsC2 =-1; and L3 + L2C1 + L1C2 + 3c3 = 0 yields 
C3 = 0. Thus, the recurrence for the Lucas numbers is 

Ln+2~ Ln+i - Ln = 0. 

We next seek the recurrencefoj/^, Z.2/0 Lsk< "'• Lnk = ank + j5nk is a Lucas-type sequence and Lk + #7 = 0 

yields Q1 = -Lk; L2k+ ciLk+ 2c2 = 0 yields L2k - L% + 2c2 = 0, but Z.f = L2k + 2(- 1)k so that 

i-2k-il + 2c2 = 0 
gives C2 = (-1) • Thus, the recurrence for Lnk is 

L(n+2)k~ LkL(n+l)k + (-DkLnk = 0. 

This one was well known. Suppose as a second example we deal with the generalized Lucas sequence associated 
with the Tribonacci sequence. Here, S7 = 1, S2 = 3, and 83 = 7, so that 5 / +c-\ = 0 yields cj = -1; 

S2 + ciS2 + 2c2 = 0 yields C2 = -1, 
and 

S3 + C1S2 + C2S1 + 3C3 = 0 yields C3 = - I 
Here, 

where a, /3, 7 are roots of 
x3-x2-x - 7 = 0. 

Suppose we would like to find the recurrence for Snk. Using Newton's identities, 

Sk + Qi = 0 Q1 = -Sk 

32k + Sk(-Sk) + 2Q2 = 0 Q2 = 1MSk - S2k) 

S3k +S2k(-Sk)^SkVMS2
k- S2k>] +3Q3 = 0 Q3 =l(S3

k-3SkS2k+2S2k) 

This is, of course, correct, but it doesn't give the neatest value. What is #2 D U t the sum of the product of roots 
taken two at a time, 

Q2 = (a$)k + (ay)k + (fo)k = -\ + \ + -L = S„k 
yk /T ak 

and 0.3 = (aPy)k = I Thus, the recurrence forSnk is 

(1-8) 3(n+3)k - SkS(n+2)k + S-kS(n+1 )k + Snk = 0. 

This and much more about the Tribonacci sequence and its associated Lucas sequence is discussed in detail by 
Trudy Tong [3] . 

2. DISCUSSION OFE-2487 

A problem in the Elementary Problem Section of the American Mathematical Monthly [2] is as follows: 

\iSk = ak + a2 + - + a* and Sk = k for 1 <k <n, find Sn+i. 
From Sk = ak + ••• + %, we know that the sequence^ obeys a linear recurrence of orders. From Newton's 

Identities we can calculate the coefficients of the polynomial whose roots are a / , 0,2, —, <V (We do not need 
to know the roots themselves.) Thus, we can find the recurrence relation, and hence can find Sn+i. This is for 
an arbitrary but fixed n. 
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Let 
(2.1) S(x) = S1+S2x+S3x

2+-.' + Sn+1x
n + - , 

whereS j, S2,S3, —,Sn are given. In our case,SM = 1/(1 - x)2. 
Let 

(2.2) CM = c1x+c2x
2+ -+cnx

n + '~ . 

These coefficients cn are to be calculated from the S7, S2f —, Sn. 
From Newton's Identities (1.5), 

Sn+i+Snci+Sn-.iC2 + - + $icn + (n + 1)cni-i = 0. 

These are precisely the coefficients of xn in 

SM+SMCM + C'M = 0. 

The solution to this differential equation is easily obtained by using the integrating factor. Thus 

CMe ISMdx = fe rsMdX(-s M)dx + C 
so that n 

CM = ~1+ce'fS(x)dx = -1 +e-(
s^+s^2/2+-+Snx

n/n+-) 

since C(0) = 0. 
In this problem, S(x)= 1/(1 - x)2 so that 

C(X) = -i+e-*
/(1'xS. 

If one writes this out, 
_j +g~x'( 1~~XJ = _ J + -J _ * _L X X J. ... 

11(1 -x) 21(1 -x)2 31(1 -x)3 

From Waring's Formula (See Patton and Burnside , Theory of Equations, etc.) 

rjr7!r^!-'rn!1
r'2^ -nrn 

where the summation is over all non-negative solutions to 

r1 + 2r2 +3r3 + — + nrn=n. 

In our case where S^ = /r for 1 < k < n, this becomes 

c *r (-Dr^+'"+rn 

over all nonnegative solutions to 

rx +2r2 +3r3 +>~ + nrn = n, 
so that 

r+2r^-+nrn=n 'J'*">'" '-1 t l kl 
r1-i-zr2i-----^nrn=n * ~ ~ K=I 

Then 

c> = iT + i-i=-1/6 
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so that 

(2.3) 

(v) fM (vh jzirk'J 
"7 n! 

:(r-!) ^ = 2-) — 
k=1 

3! 

k( 

k! 

Here we have an explicit expression for the cn for Sf< = k for 1 <k <n. 
We now return to the problem E-2487. From the Newton-Identity equation 

Sn+1 + ciSn + - + cnS1 + (n + 1)cn+J = 0. 

We must make a careful distinction between the solution to E-2487 for A? and values of the Sm sequence for 
largern. LetS% be the solution to the problem; then 

S* + c1Sn+c2Sn-i + " + cnS1 = 0, 

where S^ = k for 1 < k < n and the c^ for 1 < k < n are given by the Newton Identities using these S^. We note 
two diverse things here. Suppose we write the next Newton-Identity for a higher value of/?, 

then 

so that 

(2.4) 

Sn+1 + c1Sn + - + cnS1 + (n + 1)cn+i = 0; 

(n + 1)-S*+(n + 1)cn+1 = 0 

' n+1 /jikf n J 
S* = (n + 1)(1 + cn+1) = (n + 1) 

k=1 
k! 

We can also get a solution in another way. 

S* = -fc1Sn+- + cnS1J 

Jh , is the/? coefficient in the convolution ofS(x) and C(x) which was used earlier (2.1), (2,2). Thus 
x x2 , x3 

S*M = -CMS(x) = [1-e'x/(1~x)]/(1-x)2 
+ 

and 

(2.5) 

1!(1-x)3 2!(1-x)4 3!(1-x)5 

Slj = 1/1! = 1 

SJ = 3/1!- 1/2! = 5/2 

•Sj = 6/1!-4/2!+ 1/3! = 25/6 

k=1 

z MHJ: ; ) 
k! 

It is not difficult to show that the two formulas (2.4) and (2.5) for S% are the same. 

3. A GENERALIZATION OF E-2487 

If one lets S(x)= 1/(1 - x)m+1, then 

(3.1) 
and 

(3.2) 

C(x) = -1+en ̂
[l-l/(1~x)mJ 

S*(x) 

-I [ i-u(i-x)mr 
1-em 

(1-x)m+1 



1977] GENERALIZED LUCAS SEQUENCES 

We now get explicit expressions for Sn, cn, and S*. 
First, 

S(x) 

so that 

(3.3) 

We shall show that 

Theorem 3.1. 

c I n + m\ 
Sn+1 =( n ) 

and 

< » - £ - V I <-1>k(k
a){

am+nn-1) 
a=1 \ ' \ i 

n+1 

k=i k! m 

\ ' ' k=t k!mK
 a=i v / v 

Proof. From Schwatt [4 ] , one has the following. If j / = g(u) and (/ = f(xj, then 

^K - V t i t V f-l)a(k\„k-a d-^l d-JL 
dxn fa k! .4; l«i ,,„„ ,,„* • <*=/ 

We can find the Maclaurin expansion of 

y = e1/me-1/m(1-x)m 

n% n! dx" x=0 

Let y = e 1/meu, where u = -1/m(1- x)m; then tf°W- 7r /m°Y/ - x)ma and 

flfV = (-1)a (ma)(ma+1j-(ma + n- 1) 

dxn ma (1-x)ma+n 

d_^L=J/mu and 
du* 

d^y 

dxk 
7. 

x=0 
Thus, 

so that 

n! dxn 

k I i\k k 

-E ( ' x=0 k=1 
k! a=1 

<*tk\ (~lf~a (-1)alma+n-l\ 

mk-a ma \ " 

k=i klmK
 a=i v M ' 

Thus, since $% = Sn+i + (n + l)cn+i, then 

V- (n
n

+m) +(» + » Z - 4 £ (-'r(*)[7+
+ta) 

v ' k=l k!m a=1 x M ' 
which concludes the proof of Theorem 3.1. 

But 
S*(x) = -C(x)/(1-x)m+1 

so that we can get yet another expression for S*, 
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(3.4) 

where cn is as above and 

Yl (SjCn-j+1> ~ - ]C Sn-j+lCj 
j=1 1=1 

c ,_/n+m— 1\_(n+m— 1\ S"= [ rr, ) - [ n-1 )" 
4. RELATIONSHIPS TO PASCAL'S TRIANGLE 

An important special case deserves mention. If we \v\Sk = m for 1 <k <n, then S(x) = m/(1 - x) and 

£M = -j + e"ffm/(1-x)Jdx = -1 + (1-X)m . 

ck = (-1)k'm 

Therefore, 

for 1 < k < m < n or for 1 <k <n < mf andc^ = 0 for/7 <k <m, and ck = 0 for /r >/7 in any case. Now, let 
Sk = -m for 1 < £ < /7; then 

S M - —/7?/T/ - x) and £frj = -1 + 1/(1 - x)m, 

and we are back to columns of Pascal's triangle. 
If we return to 

Ok 
(~Dk 

k! 

m 1 O 0 0 
m m 2 0 0 
m m m 3 0 
m m m m 4 
m m m m m 

kXk 

then we have rows of Pascal's triange, while with 

°k k! 

-m 1 0 0 0 
-m -m 2 0 0 
—m —m —m 3 0 
—m —m —m —m 4 
—m —m —m —m —m 

kXk 

we have columns of Pascal's triangle. 
Suppose that we have this form forc^ in terms of general Sk but that the recurrence is of finite order. Then, 

clearly, c^ = 0 for /r > n. To see this easily, consider, for example, S; = 7, $2 = 3,S3 = 7, 

$n+3 = $n+2 + Sn+1 +^n • 

Ck = k! 

1 1 0 0 0 0 
3 1 2 0 0 0 
7 3 1 3 0 0 

11 7 3 1 4 (0 
21 11 7 3 1 5 
39 21 11 7 3 1 

1 - 1 = 0 
3 - 1 - 2 = 0 

7 - 3 - 1 - 3 = 0 
1 1 - 7 - 3 - 1 = 0 

2 1 - 1 1 - 7 - 3 = 0 
3 9 - 2 1 - 1 1 - 7 = 0, etc. 

kXk 

Thus, in this case, we can get the first column all zero with multipliers ci, C2, C3, Bach of which is - 1 . 
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5. THE GENERAL CASE AND SOME CONSEQUENCES 

Returning now to 

(5.1) CM = -1+e 

which was found in Riordan [6 ] , we can see some nice consequences of this neat formula. 
It is easy to establish that the regular Lucas numbers have generating function 

-(Slx+S2x
2/2+S3x

3/3+-+Snx
n/n+-) 

(5.2) 1 + 2x S(x) 
1 -X -X' 

-[(1+2x)/(1-x-x2)]dx 

X Ln+1X
n 

n=0 

= e 
ln(1-x-x2) 1- .2 _ 1 + cM. 

Here we know that c ; = - 7 , C2 = - 7 , and cm = 0 for all m > 2. This implies that the Lucas numbers put into 
the formulas for cm (m > 2) yield zero, and furthermore, since Lk, L2k, L3k, — * 0 D e v 7 - Lkx + (-1) x , 
then it is true that Sn = Lnk put into those same formulas yield non-linear identities for the /r-sected Lucas 
number sequence. However, consider 

(5.3) 

and 

l(Llx+L2x
2/2+-+Lnx

n/n+-) = 

)(Lkx+L2kx
2/2+-+Lnkx

n/n+-) 

7 
/ - x - x' 

1 

n=0 

\k„2 1 - Lkx + (-1)Kx 

Let us illustrate. Let Si, S2, S3, - be generalized Lucas: numbers, 

ci = -Sj 

c2 = ys*-s2) 
c3 = l(S$-3SiS2 + 2S3) 

c4 = -—(S* - 6Sfs2 + 8S1S3 + 3S2
2- 6S4) 

n=0 

F(n+i)k vn 
Fk 

Let 5^ = Lnk so that cm = 0 for m > 2. 

while 

1-[L^-3LkL2k+2L3k] = 0 

1-[L$ + 3LkL2k+2L3k] = F4k/Fk 

In Conkwright [1] was given 

(-1)' 
ml 

5 7 7 
52 5 7 

53 S2 

0 0 0 
2 0 0 

5/ 3 0 

which was derived in Hoggatt and Bicknell [5] 
Thus for m > 2 

Lk 

$m-1 
5/77, , Sm-f Sm-2 

... m _ 7 
5 2 5/ 

(5.5) (-1)' 
m! 

L2k 

L3k 

7 0 0 0 
Lk 2 0 0 

L2k Lk 3 0 

L(m-1)k L(m-2)k ... ... ... k~ 7 
Lmk i(m-1)k ... ... L2k

 Lk 
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for all k > 0, where L^ is the kth Lucas number. This same formula applies, since cm = 0 form > 3, if Sm = imk 
where 

£ ; = 7 , L2 = 3, 13 = 7, and im+3 = Lm+2 + Lm+1+Lm 

are the generalized Lucas numbers associated with the Tribonacci numbers Tn 

<T1 = T2 = I T3 = 2, and Tn+3 = Tn+2+Tn+1 + TnJ 

If Lm are the Lucas numbers associated with the generalized Fibonacci numbersFn whose generating func-
tion is 

(5.6) —J- - f Fn+1x
n, 

7 - X - xz- x X n=0 

then if Sm = Lmk, then the corresponding cm = 0 for/77 > r, yielding (5.5) for/77 > /-with Lmk everywhere re-
placed by Lmk, 

Further, let 

then 

and 

/ c 7 \ F'(x) _ l+2x + 3x2 + - + rxr'1 _ *<sp . n 

where in is the generalized Lucas sequence associated with the generalized Fibonacci sequence whose generat-
ing function is 1/F(x). Thus, any of these generalized Fibonacci sequences is obtainable as follows: 

-f[F'(x)/F(x)]dx _ 7 _ v F V7 

F/W = 7 - * - * 2 - x : ? xr; 

Fix) = -1-2x-3x2 rxr~1 

7 - x - x2 - x3 xr
 n=0 

and we have 

Theorem 5.1. 

eLlX+L^/2^+Lnx
n/n^ = yfM = £ p^n 

n=Q 

The generalized Fibonacci numbers 1 ^ generated by (5.6) appear in Hoggattand Bicknell [7] and [8] ascer-
tain rising diagonal sums in generalized Pascal triangles. 

Write the left-justified polynomial coefficient array generated by expansions of 

(l+x+x2 + -+xr-1)n, n = 0, 1,2,3, -,r > 2 

Then the generalized Fibonacci numbers u(n; p,q) are given sequentially by the sum of the element in 
the left-most column and the nth row and the terms obtained by taking stepsp units up and q units right 
through the array. The simple rising diagonal sums which occur for/7 = q = 1 give 

u(n;1,1) = Fn+1, n = 0, 1,2,-. 

The special case r =2, p = q = 7 is the well known relationship between rising diagonal sums in Pascal's triangle 
and the ordinary Fibonacci numbers, 

f(n+1)/2j 

1=0 V 

while 
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[<n + 1)/2] 
(n ~ i\ in 

1 + 1 

<-V/2J 

;=n x ' r i=0 

where 

(V), 
is the polynomial coefficient in the ith column and (n - i)st row of the left-adjusted array. 
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******* 
[Continued from p. 122.] 

From this we have that 

(3) urn) - n<inL±^pii^ 
Now, letting a = F(n), b~ F(n+ 1) in (2), we have 

(4) 5f(n)f(n + 1) = L(F(n + 2)) - (-l)F(n)L(F(n - V). 

Finally, substituting (3) for each term on the right of (4) and rearranging gives the required recursion. 
It is interesting to note that a 5* order recursion for f(n) exists, but it is much more complicated. 

Proposition. 
f(n) = (5f(n-2)2 + 2(-l)F(n+1hf(n-3)2f(n-4) + f(n-2)(f(n-2)-(-1)F(n^ 

2f(n - 4)f(n - 3) 

Proof. Use Equation (2) and the identity 

(5) Ua)L(b) = L(a + b)+(-1)aL(b-a)f 

to obtain 
5f(n)f(n + 1) - 2L(F(n + 2))- L(F(n))L(F(n + 1)1 

Using (3) on the right-hand side and rearranging gives the required recursion. 
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