GENERALIZED LUCAS SEOUENCES

VERNER E. HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON San Jose S tate University, San Jose, California 95192

1. INTRODUCTION

In working with linear recurrence sequences, the generating functions are of the form

$$
\begin{equation*}
\frac{q(x)}{p(x)}=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{1.1}
\end{equation*}
$$

where $p(x)$ is a polynomial and $q(x)$ is a polynomial of degree smaller than $p(x)$. In multisecting the sequence $\left\{a_{n}\right\}$ it is necessary to find polynomials $P(x)$ whose roots are the $k^{\text {th }}$ power of the roots of $p(x)$. Thus, we are led to the elementary symmetric functions.
Let
(1.2) $p(x)=\prod_{i=1}^{n}\left(x-a_{i}\right)=x^{n}-p_{1} x^{n-1}+p_{2} x^{n-2}-p_{3} x^{n-3}+\cdots+(-1)^{k} p_{k} x^{n-k}+\cdots+(-1)^{n} p_{n}$,
where p_{k} is the sum of products of the roots taken k at a time. The usual problem is, given the polynomial $p(x)$, to find the polynomial $P(x)$ whose roots are the $k^{\text {th }}$ powers of the roots of $p(x)$,

$$
\begin{equation*}
P(x)=x^{n}-P_{1} x^{n-1}+P_{2} x^{n-2}-P_{3} x^{n-3}+\cdots+(-1)^{n} P_{n} . \tag{1.3}
\end{equation*}
$$

There are two basic problems here. Let

$$
\begin{equation*}
S_{k}=a_{1}^{k}+a_{2}^{k}+a_{3}^{k}+\cdots+a_{n}^{k}, \tag{1.4}
\end{equation*}
$$

where

$$
p(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)=x^{n}+c_{1} x^{n-1}+c_{2} x^{n-2}+\cdots+c_{n}
$$

and $c_{k}=(-1)^{k} p_{k}$. then Newton's Identities (see Conkwright [1])

$$
\begin{gather*}
S_{1}+c_{1}=0 \\
S_{2}+S_{1} c_{1}+2 c_{2}=0 \\
\cdots \tag{1.5}\\
S_{n}+S_{n-1} c_{1}+\cdots+S_{1} c_{n-1}+n c_{n}=0 \\
S_{n+1}+S_{n} c_{1}+\cdots+S_{1} c_{n}+(n+1) c_{n+1}=0
\end{gather*}
$$

can be used to compute S_{k} for $S_{1}, S_{2}, \cdots, S_{n}$. Now, once these first n values are obtained, the recurrence relation

$$
\begin{equation*}
S_{n+1}+S_{n} c_{1}+S_{n-1} c_{2}+\cdots+S_{1} c_{n}=0 \tag{1.6}
\end{equation*}
$$

will allow one to get the next value S_{n+1} and all subsequent values of S_{m} are determined by recursion. Returning now to the polynomial $P(x)$,

$$
\begin{equation*}
P(x)=\left(x-a_{1}^{k}\right)\left(x-a_{2}^{k}\right)\left(x-a_{3}^{k}\right) \cdots\left(x-a_{n}^{k}\right)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n} . \tag{1.7}
\end{equation*}
$$

where

$$
Q_{1}=a_{1}^{k}+a_{2}^{k}+\cdots+a_{n}^{k}=s_{k}
$$

and it is desired to find the $Q_{1}, Q_{2}, Q_{3}, \cdots, Q_{n}$. Clearly, one now uses the Newton identities (1.5) again, since $S_{k}, S_{2 k}, S_{3 k}, \cdots, S_{n k}$ can be found from the recurrence for S_{m}, where we know $S_{k}, S_{2 k}, S_{3 k}, \cdots, S_{n k}$ and
wish to find the recurrence for the k-sected sequence. Bef.ore, we had the auxiliary polynomial for S_{m} and computed the $S_{1}, S_{2}, \cdots, S_{n}$. Here, we have $S_{k}, S_{2 k}, \cdots, S_{n k}$ and wish to calculate the coefficients of the auxiliary polynomial $P(x)$. Given a sequence S_{m} and that it satisfies a linear recurrence of order n, one can use Newton's identities to obtain that recurrence. This requires only that $S_{1}, S_{2}, S_{3}, \cdots, S_{n}$ be known. If

$$
S_{n+1}+\left(S_{n} c_{1}+S_{n-1} c_{2}+\cdots+S_{1} c_{n}\right)+(n+1) c_{n+1}=0
$$

is used, then $S_{n+1}=-\left(S_{n} c_{1}+\cdots+S_{1} c_{n}\right)$ and $c_{n+1}=0$.
Suppose that we know that $L_{1}, L_{2}, L_{3}, L_{4}, \cdots$, the Lucas sequence, satisfies a linear recurrence of order two. Then $L_{1}+c_{1}=0$ yields $c_{1}=-1 ; L_{2}+L_{1} c_{1}+2 c_{2}=0$ yields $c_{2}=-1$; and $L_{3}+L_{2} c_{1}+L_{1} c_{2}+3 c_{3}=0$ yields $c_{3}=0$. Thus, the recurrence for the Lucas numbers is

$$
L_{n+2}-L_{n+1}-L_{n}=0
$$

We next seek the recurrence for $L_{k}, L_{2 k}, L_{3 k}, \cdots . L_{n k}=a^{n k}+\beta^{n k}$ is a Lucas-type sequence and $L_{k}+Q_{1}=0$ yields $Q_{1}=-L_{k} ; L_{2 k}+c_{1} L_{k}+2 c_{2}=0$ yields $L_{2 k}-L_{k}^{2}+2 c_{2}=0$, but $L_{k}^{2}=L_{2 k}+2(-1)^{k}$ so that

$$
L_{2 k}-L_{k}^{2}+2 c_{2}=0
$$

gives $c_{2}=(-1)^{k}$. Thus, the recurrence for $L_{n k}$ is

$$
L_{(n+2) k}-L_{k} L_{(n+1) k}+(-1)^{k} L_{n k}=0 .
$$

This one was well known. Suppose as a second example we deal with the generalized Lucas sequence associated with the Tribonacci sequence. Here, $S_{1}=1, S_{2}=3$, and $S_{3}=7$, so that $S_{1}+c_{1}=0$ yields $c_{1}=-1$;

$$
S_{2}+c_{1} S_{2}+2 c_{2}=0 \quad \text { yields } \quad c_{2}=-1
$$

and

$$
S_{3}+c_{1} S_{2}+c_{2} S_{1}+3 c_{3}=0 \quad \text { yields } \quad c_{3}=-1 .
$$

Here,
where a, β, γ are roots of

$$
s_{k}=a^{k}+\beta^{k}+\gamma^{k}
$$

Suppose we would like to find the recurrence for $S_{n k}$. Using Newton's identities,

$$
\begin{array}{cc}
S_{k}+a_{1}=0 & a_{1}=-S_{k} \\
S_{2 k}+S_{k}\left(-S_{k}\right)+2 a_{2}=0 & a_{2}=1 / 2\left(S_{k}^{2}-S_{2 k}\right) \\
S_{3 k}+S_{2 k}\left(-S_{k}\right)+S_{k}\left[1 / 2\left(S_{k}^{2}-S_{2 k}\right)\right]+3 Q_{3}=0 & a_{3}=\frac{1}{6}\left(S_{k}^{3}-3 S_{k} S_{2 k}+2 S_{2 k}\right)
\end{array}
$$

This is, of course, correct, but it doesn't give the neatest value. What is Q_{2} but the sum of the product of roots taken two at a time,

$$
Q_{2}=(a \beta)^{k}+(a \gamma)^{k}+(\beta \gamma)^{k}=\frac{1}{\gamma^{k}}+\frac{1}{\beta^{k}}+\frac{1}{a^{k}}=S_{-k}
$$

and $Q_{3}=(a \beta \gamma)^{k}=1$. Thus, the recurrence for $S_{n k}$ is

$$
\begin{equation*}
S_{(n+3) k}-S_{k} S_{(n+2) k}+S_{-k} S_{(n+1) k}+S_{n k}=0 \tag{1.8}
\end{equation*}
$$

This and much more about the Tribonacci sequence and its associated Lucas sequence is discussed in detail by Trudy Tong [3].

2. DISCUSSI ON OF E-2487

A problem in the Elementary Problem Section of the American Mathematical Monthly [2] is as follows:

$$
\text { If } S_{k}=a_{1}^{k}+a_{2}^{k}+\cdots+a_{n}^{k} \text { and } S_{k}=k \text { for } 1 \leqslant k \leqslant n \text {, find } S_{n+1} \text {. }
$$

From $S_{k}=a_{1}^{k}+\cdots+a_{n}^{k}$, we know that the sequence S_{m} obeys a linear recurrence of order n. From Newton's Identities we can calculate the coefficients of the polynomial whose roots are $a_{1}, a_{2}, \cdots, a_{n}$. (We do not need to know the roots themselves.) Thus, we can find the recurrence relation, and hence can find S_{n+1}. This is for an arbitrary but fixed n.

Let
(2.1)

$$
S(x)=S_{1}+S_{2} x+S_{3} x^{2}+\cdots+S_{n+1} x^{n}+\cdots
$$

where $S_{1}, S_{2}, S_{3}, \cdots, S_{n}$ are given. In our case, $S(x)=1 /(1-x)^{2}$.
Let
(2.2)

$$
c(x)=c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}+\cdots
$$

These coefficients c_{n} are to be calculated from the $S_{1}, S_{2}, \cdots, S_{n}$.
From Newton's Identities (1.5),

$$
S_{n+1}+S_{n} c_{1}+S_{n-1} c_{2}+\cdots+S_{1} c_{n}+(n+1) c_{n+1}=0
$$

These are precisely the coefficients of x^{n} in

$$
S(x)+S(x) C(x)+C^{\prime}(x)=0
$$

The solution to this differential equation is easily obtained by using the integrating factor. Thus
so that

$$
C(x) e^{\int S(x) d x}=\int e^{\int S(x) d x}(-S(x)) d x+C
$$

$$
C(x)=-1+c e^{-\int S(x) d x}=-1+e^{-\left(S_{1} x+S_{2} x^{2} / 2+\cdots+S_{n} x^{n} / n+\cdots\right)}
$$

since $C(0)=0$.
In this problem, $S(x)=1 /(1-x)^{2}$ so that

$$
C(x)=-1+e^{-x /(1-x)}
$$

If one writes this out,

$$
-1+e^{-x /(1-x)}=-1+1-\frac{x}{1!(1-x)}+\frac{x^{2}}{2!(1-x)^{2}}-\frac{x^{3}}{3!(1-x)^{3}}+\cdots .
$$

From Waring's Formula (See Patton and Burnside , Theory of Equations, etc.)

$$
C_{n}=\sum \frac{(-1)^{r_{1}+r_{2}+\cdots+r_{n}} S_{1}^{r_{1}} S_{2}^{r_{2}} \cdots S_{n}^{r_{n}}}{r_{1}!r_{2}!r_{3}!\cdots r_{n}!1^{r_{1}} 2^{r_{2}} \cdots n^{r_{n}}},
$$

where the summation is over all non-negative solutions to

$$
r_{1}+2 r_{2}+3 r_{3}+\cdots+n r_{n}=n .
$$

In our case where $S_{k}=k$ for $1 \leqslant k \leqslant n$, this becomes

$$
C_{n}=\sum \frac{(-1)^{r_{1}+r_{2}+\cdots+r_{n}}}{r_{1}!r_{2}!\cdots r_{n}!}
$$

over all nonnegative solutions to

$$
r_{1}+2 r_{2}+3 r_{3}+\cdots+n r_{n}=n,
$$

so that

$$
\sum_{r_{1}+2 r_{2}+\cdots+n r_{n}=n} \frac{(-1)^{r_{1}+r_{2}+\cdots+r_{n}}}{r_{1}!r_{2}!r_{3}!\cdots r_{n}!}=\sum_{k=1}^{n} \frac{(-1)^{k}\binom{n-1}{k-1}}{k!} .
$$

Then

$$
\begin{gathered}
c_{1}=\frac{-1}{1!}=-1 \\
c_{2}=\frac{-1}{1!}+\frac{1}{2!}=-1 / 2 \\
c_{3}=\frac{-1}{1!}+\frac{2}{2!}-\frac{1}{3!}=-1 / 6 \\
c_{4}=\frac{-1}{1!}+\frac{3}{2!}-\frac{3}{3!}+\frac{1}{4!}=1 / 24
\end{gathered}
$$

$$
c_{n}=-\frac{\binom{n-1}{0}}{1!}+\frac{\binom{n-1}{1}}{2!}-\frac{\binom{n-1}{2}}{3!}+\cdots+\frac{(-1)^{n}\binom{n-1}{n-1}}{n!}
$$

so that

$$
\begin{equation*}
c_{n}=\sum_{k=1}^{n} \frac{(-1)^{k}\binom{n-1}{k-1}}{k!} \tag{2.3}
\end{equation*}
$$

Here we have an explicit expression for the c_{n} for $S_{k}=k$ for $1 \leqslant k \leqslant n$.
We now return to the problem E-2487. From the Newton-Identity equation

$$
S_{n+1}+c_{1} S_{n}+\cdots+c_{n} S_{1}+(n+1) c_{n+1}=0
$$

We must make a careful distinction between the solution to $\mathrm{E}-2487$ for n and values of the S_{m} sequence for $\operatorname{larger} n$. Let S_{n}^{*} be the solution to the problem; then

$$
S_{n}^{*}+c_{1} S_{n}+c_{2} S_{n-1}+\cdots+c_{n} S_{1}=0
$$

where $S_{k}=k$ for $1 \leqslant k \leqslant n$ and the c_{k} for $1 \leqslant k \leqslant n$ are given by the Newton Identities using these S_{k}. We note two diverse things here. Suppose we write the next Newton-Identity for a higher value of n,

$$
S_{n+1}+c_{1} S_{n}+\cdots+c_{n} S_{1}+(n+1) c_{n+1}=0 ;
$$

then

$$
(n+1)-S_{n}^{*}+(n+1) c_{n+1}=0
$$

so that

$$
\begin{equation*}
S_{n}^{*}=(n+1)\left(1+c_{n+1}\right)=(n+1)\left[1+\sum_{k=1}^{n+1} \frac{(-1)^{k}\binom{n}{k-1}}{k!}\right] . \tag{2.4}
\end{equation*}
$$

We can also get a solution in another way.

$$
S_{n}^{*}=-\left[c_{1} S_{n}+\cdots+c_{n} S_{1}\right]
$$

is the $n^{\text {th }}$ coefficient in the convolution of $S(x)$ and $C(x)$ which was used earlier (2.1), (2.2). Thus

$$
\begin{gathered}
S^{*}(x)=-C(x) S(x)=\left[1-e^{-x /(1-x)}\right] /(1-x)^{2}=\frac{x}{1!(1-x)^{3}}-\frac{x^{2}}{2!(1-x)^{4}}+\frac{x^{3}}{3!(1-x)^{5}}-\cdots \\
S_{1}^{*}=1 / 1!=1 \\
S_{2}^{*}=3 / 1!-1 / 2!=5 / 2 \\
S_{3}^{*}=6 / 1!-4 / 2!+1 / 3!=25 / 6
\end{gathered}
$$

and

$$
\begin{equation*}
S_{n}^{*}=\sum_{k=1}^{n} \frac{(-1)^{k+1}\binom{n+1}{k+1}}{k!} \tag{2.5}
\end{equation*}
$$

It is not difficult to show that the two formulas (2.4) and (2.5) for S_{n}^{*} are the same.

3. A GENERALIZATION OF E-2487

If one lets $S(x)=1 /(1-x)^{m+1}$, then

$$
\begin{equation*}
C(x)=-1+e^{\frac{1}{m}\left[1-1 /(1-x)^{m}\right]} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
S^{*}(x)=\frac{1-e^{\frac{1}{m}\left[1-1 /(1-x)^{m}\right]}}{(1-x)^{m+1}} \tag{3.2}
\end{equation*}
$$

We now get explicit expressions for S_{n}, c_{n}, and S_{n}^{*}.
First,

$$
S(x)=\frac{1}{(1-x)^{m+1}}=\sum_{n=0}^{\infty}\binom{n+m}{n} x^{n}
$$

so that
(3.3)

$$
S_{n+1}=\binom{n+m}{n}
$$

We shall show that
Theorem 3.1.

$$
c_{n}=\sum_{k=1}^{n} \frac{1}{k!m^{k}} \sum_{\alpha=1}^{k}(-1)^{k}\binom{k}{\alpha}\binom{\alpha m+n-1}{n}
$$

and

$$
S_{n}^{*}=\binom{n+m}{n}+(n+1) c_{n+1}=\binom{n+m}{n}+(n+1) \sum_{k=1}^{n+1} \frac{1}{k!m^{k}} \sum_{\alpha=1}^{k}(-1)^{\alpha}\binom{k}{\alpha}\binom{m \alpha+n}{n+1}
$$

Proof. From Schwatt [4], one has the following. If $y=g(u)$ and $u=f(x)$, then

$$
\frac{d^{n} y}{d x^{n}}=\sum_{k=1}^{n} \frac{(-1)^{k}}{k!} \sum_{\alpha=1}^{k}(-1)^{\alpha}\binom{k}{\alpha} u^{k-\alpha} \frac{d^{n} u^{\alpha}}{d x^{n}} \frac{d^{k} y}{d u^{k}}
$$

We can find the Maclaurin expansion of

$$
y=e^{1 / m} e^{-1 / m(1-x)^{m}}=\left.\sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^{n} y}{d x^{n}}\right|_{x=0} x^{n} .
$$

Let $y=e^{1 / m} e^{u}$, where $u=-1 / m(1-x)^{m}$; then $u^{\alpha}=(-1)^{\alpha} / m^{\alpha}(1-x)^{m \alpha}$ and

$$
\begin{aligned}
& \frac{d^{n} u^{\alpha}}{d x^{n}}=\frac{(-1)^{\alpha}}{m^{\alpha}} \frac{(m a)(m a+1) \cdots(m a+n-1)}{(1-x)^{m \alpha+n}} \\
& \frac{d^{k} y}{d u^{k}}=e^{1 / m} e^{u}, \quad \text { and }\left.\quad \frac{d^{k} y}{d x^{k}}\right|_{x=0}=1
\end{aligned}
$$

Thus,

$$
\left.\frac{1}{n!} \frac{d^{n} y}{d x^{n}}\right|_{x=0}=\sum_{k=1}^{k} \frac{(-1)^{k}}{k!} \sum_{\alpha=1}^{k}(-1)^{\alpha}\binom{k}{\alpha} \frac{(-1)^{k-\alpha}}{m^{k-\alpha}} \frac{(-1)^{\alpha}}{m^{\alpha}}\binom{m \alpha+n-1}{n}
$$

so that

$$
c_{n}=\sum_{k=1}^{n} \frac{1}{k!m^{k}} \sum_{\alpha=1}^{k}(-1)^{\alpha}\binom{k}{\alpha}\binom{m \alpha+n-1}{n} .
$$

Thus, since $S_{n}^{*}=S_{n+1}+(n+1) c_{n+1}$, then

$$
S_{n}^{*}=\binom{n+m}{n}+(n+1) \sum_{k=1}^{n+1} \frac{1}{k!m^{k}} \sum_{\alpha=1}^{k}(-1)^{\alpha}\binom{k}{\alpha}\binom{m \alpha+n}{n+1}
$$

which concludes the proof of Theorem 3.1.
But

$$
S^{*}(x)=-C(x) /(1-x)^{m+1}
$$

so that we can get yet another expression for S_{n}^{*},

$$
\begin{equation*}
S_{n}^{*}=-\sum_{j=1}^{n}\left(S_{j} c_{n-j+1}\right)=-\sum_{j=1}^{n} S_{n-j+1} c_{j} \tag{3.4}
\end{equation*}
$$

where c_{n} is as above and

$$
S_{n}=\binom{n+m-1}{m}=\binom{n+m-1}{n-1} .
$$

4. RELATIONSHIPS TO PASCAL'S TRIANGLE

An important special case deserves mention. If we let $S_{k}=m$ for $1 \leqslant k \leqslant n$, then $S(x)=m /(1-x)$ and

$$
C(x)=-1+e^{-\int[m /(1-x)] d x}=-1+(1-x)^{m} .
$$

Therefore,

$$
c_{k}=(-1)^{k}\binom{m}{k}
$$

for $1 \leqslant k \leqslant m \leqslant n$ or for $1 \leqslant k \leqslant n<m$, and $c_{k}=0$ for $n<k \leqslant m$, and $c_{k}=0$ for $k>n$ in any case. Now, let $S_{k}=-m$ for $1 \leqslant k \leqslant n$; then

$$
S(x)=-m /(1-x) \quad \text { and } \quad C(x)=-1+1 /(1-x)^{m} \text {, }
$$

and we are back to columns of Pascal's triangle.
If we return to

$$
c_{k}=\frac{(-1)^{k}}{k!}\left|\begin{array}{cccccc}
m & 1 & 0 & 0 & 0 & \cdots \\
m & m & 2 & 0 & 0 & \cdots \\
m & m & m & 3 & 0 & \cdots \\
m & m & m & m & 4 & \cdots \\
m & m & m & m & m & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right|_{k \times k}
$$

then we have rows of Pascal's triange, while with

$$
c_{k}=\frac{(-1)^{k}}{k!}\left|\begin{array}{cccccc}
-m & 1 & 0 & 0 & 0 & \cdots \\
-m & -m & 2 & 0 & 0 & \cdots \\
-m & -m & -m & 3 & 0 & \cdots \\
-m & -m & -m & -m & 4 & \cdots \\
-m & -m & -m & -m & -m & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right|_{k \times k}
$$

we have columns of Pascal's triangle.
Suppose that we have this form for c_{k} in terms of general S_{k} but that the recurrence is of finite order. Then, clearly, $c_{k}=0$ for $k>n$. To see this easily, consider, for example, $S_{1}=1, S_{2}=3, S_{3}=7$,

$$
\begin{gathered}
S_{n+3}=S_{n+2}+S_{n+1}+S_{n} . \\
c_{k}=\frac{(-1)^{k}}{k!}\left|\begin{array}{rrrrrrr}
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
3 & 1 & 2 & 0 & 0 & 0 & \cdots \\
7 & 3 & 1 & 3 & 0 & 0 & \cdots \\
11 & 7 & 3 & 1 & 4 & 0 & \cdots \\
21 & 11 & 7 & 3 & 1 & 5 & \cdots \\
39 & 21 & 11 & 7 & 3 & 1 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right|_{k \times k} \\
1-1=0 \\
3-1-2=0 \\
7-3-1-3=0 \\
11-7-3-1=0 \\
21-11-7-3=0 \\
39-21-11-7=0, \text { etc. }
\end{gathered}
$$

Thus, in this case, we can get the first column all zero with multipliers c_{1}, c_{2}, c_{3}, each of which is -1 .

5. THE GENERAL CASE AND SOME CONSEQUENCES

Returning now to

$$
\begin{equation*}
C(x)=-1+e^{-\left(S_{1} x+S_{2} x^{2} / 2+S_{3} x^{3} / 3+\cdots+S_{n} x^{n} / n+\cdots\right)} \tag{5.1}
\end{equation*}
$$

which was found in Riordan [6] , we can see some nice consequences of this neat formula.
It is easy to establish that the regular Lucas numbers have generating function

$$
\begin{gather*}
\frac{1+2 x}{1-x-x^{2}}=S(x)=\sum_{n=0}^{\infty} L_{n+1} x^{n} \tag{5.2}\\
e^{-\left[(1+2 x) /\left(1-x-x^{2}\right)\right] d x}=e^{\ln \left(1-x-x^{2}\right)}=1-x-x^{2}=1+C(x)
\end{gather*}
$$

Here we know that $c_{1}=-1, c_{2}=-1$, and $c_{m}=0$ for all $m>2$. This implies that the Lucas numbers put into the formulas for $c_{m}(m>2)$ yield zero, and furthermore, since $L_{k}, L_{2 k}, L_{3 k}, \cdots$, obey $1-L_{k} x+(-1)^{k} x^{2}$, then it is true that $S_{n}=L_{n k}$ put into those same formulas yield non-linear identities for the k-sected Lucas number sequence. However, consider

$$
\begin{equation*}
e^{\left(L_{1} x+L_{2} x^{2} / 2+\cdots+L_{n} x^{n} / n+\cdots\right)}=\frac{1}{1-x-x^{2}}=\sum_{n=0}^{\infty} F_{n+1} x^{n} \tag{5.3}
\end{equation*}
$$

and

$$
e^{\left(L_{k} x+L_{2 k} x^{2} / 2+\cdots+L_{n k} x^{n} / n+\cdots\right)}=\frac{1}{1-L_{k} x+(-1)^{k} x^{2}}=\sum_{n=0}^{\infty} \frac{F(n+1) k}{F_{k}} x^{n}
$$

Let us illustrate. Let $S_{1}, S_{2}, S_{3}, \cdots$ be generalized Lucas numbers,

$$
\begin{gathered}
c_{1}=-S_{1} \\
c_{2}=\frac{1}{2}\left(S_{1}^{2}-S_{2}\right) \\
c_{3}=\frac{1}{6}\left(S_{1}^{3}-3 S_{1} S_{2}+2 S_{3}\right) \\
c_{4}=\frac{1}{24}\left(S_{1}^{4}-6 S_{1}^{2} S_{2}+8 S_{1} S_{3}+3 S_{2}^{2}-6 S_{4}\right)
\end{gathered}
$$

$$
\ldots \quad . .
$$

Let $S_{n}=L_{n k}$ so that $c_{m}=0$ for $m>2$.

$$
\frac{1}{6}\left[L_{k}^{3}-3 L_{k} L_{2 k}+2 L_{3 k}\right]=0
$$

while

$$
\frac{1}{6}\left[L_{k}^{3}+3 L_{k} L_{2 k}+2 L_{3 k}\right]=F_{4 k} / F_{k}
$$

In Conkwright [1] was given

$$
c_{m}=\frac{(-1)^{m}}{m!}\left|\begin{array}{llllll}
S_{1} & 1 & 0 & 0 & 0 & \cdots \\
S_{2} & S_{1} & 2 & 0 & 0 & \cdots \\
S_{3} & S_{2} & S_{1} & 3 & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
S_{m-1} & \cdots & \cdots & \cdots & \cdots & m-1 \\
S_{m} & S_{m-1} & S_{m-2} & \cdots & S_{2} & S_{1}
\end{array}\right|
$$

which was derived in Hoggatt and Bicknell [5].
Thus for $m>2$
(5.5)

$$
c_{m}=\frac{(-1)^{m}}{m!}\left|\begin{array}{cccccc}
L_{k} & 1 & 0 & 0 & 0 & \cdots \\
L_{2 k} & L_{k} & 2 & 0 & 0 & \cdots \\
L_{3 k} & L_{2 k} & L_{k} & 3 & 0 & \cdots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \cdots \\
L_{(m-1) k} & L_{(m-2) k} & \ldots & \ldots & \ldots & k-1 \\
L_{m k} & L_{(m-1) k} & \ldots & \ldots & L_{2 k} & L_{k}
\end{array}\right|=0
$$

for all $k>0$, where L_{k} is the $k^{\text {th }}$ Lucas number. This same formula applies, since $c_{m}=0$ for $m>3$, if $S_{m}=£_{m k}$ where

$$
£_{1}=1, \quad £_{2}=3, \quad £_{3}=7, \quad \text { and } \quad £_{m+3}=£_{m+2}+£_{m+1}+£_{m}
$$

are the generalized Lucas numbers associated with the Tribonacci numbers T_{n}

$$
\left(T_{1}=T_{2}=1, \quad T_{3}=2, \quad \text { and } \quad T_{n+3}=T_{n+2}+T_{n+1}+T_{n} .\right)
$$

If δ_{m} are the Lucas numbers associated with the generalized Fibonacci numbers F_{n} whose generating function is

$$
\begin{equation*}
\frac{1}{1-x-x^{2}-x^{3}-\cdots-x^{r}}=\sum_{n=0}^{\infty} F_{n+1 x^{n}}, \tag{5.6}
\end{equation*}
$$

then if $S_{m}=\mathcal{L}_{m k}$, then the corresponding $c_{m}=0$ for $m>r$, yielding (5.5) for $m>r$ with $L_{m k}$ everywhere replaced by $\Sigma_{m k}$.
Further, let

$$
F(x)=1-x-x^{2}-x^{3}-\cdots-x^{r} ;
$$

then

$$
F^{\prime}(x)=-1-2 x-3 x^{2}-\cdots-r x^{r-1}
$$

and

$$
\begin{equation*}
-\frac{F^{\prime}(x)}{F(x)}=\frac{1+2 x+3 x^{2}+\cdots+r x^{r-1}}{1-x-x^{2}-x^{2}-\cdots-x^{r}}=\sum_{n=0}^{\infty} £_{n+1} x^{n} . \tag{5.7}
\end{equation*}
$$

where $£_{n}$ is the generalized Lucas sequence associated with the generalized Fibonacci sequence whose generating function is $1 / F(x)$. Thus, any of these generalized Fibonacci sequences is obtainable as follows:

$$
e^{-\int\left[F^{\prime}(x) / F(x)\right] d x}=\frac{1}{1-x-x^{2}-x^{3}-\cdots-x^{r}}=\sum_{n=0}^{\infty} F_{n+1} x^{n}
$$

and we have
Theorem 5.1.

$$
e^{\mathcal{L}_{1} x+\AA_{2} x^{2} / 2+\cdots+£_{n} x^{n} / n+\cdots}=1 / F(x)=\sum_{n=0}^{\infty} F_{n+1} x^{n} .
$$

The generalized Fibonacci numbers F_{n} generated by (5.6) appear in Hoggatt and Bicknell [7] and [8] as certain rising diagonal sums in generalized Pascal triangles.
Write the left-justified polynomial coefficient array generated by expansions of

$$
\left(1+x+x^{2}+\cdots+x^{r-1}\right)^{n}, \quad n=0,1,2,3, \cdots, r \geqslant 2 .
$$

Then the generalized Fibonacci numbers $u(n ; p, q)$ are given sequentially by the sum of the element in the left-most column and the $n^{\text {th }}$ row and the terms obtained by taking steps p units up and q units right through the array. The simple rising diagonal sums which occur for $p=q=1$ give

$$
u(n ; 1,1)=F_{n+1}, \quad n=0,1,2, \cdots .
$$

The special case $r=2, p=q=1$ is the well known relationship between rising diagonal sums in Pascal's triangle and the ordinary Fibonacci numbers,

$$
\sum_{i=0}^{[(n+1) / 2]}\binom{n-i}{i}=F_{n+1}
$$

while

$$
\sum_{i=0}^{[(n+1) / 2]}\binom{n-i}{i}_{r}=F_{n+1}
$$

where

$$
\binom{n-i}{i}_{r}
$$

is the polynomial coefficient in the $i^{\text {th }}$ column and $(n-i)^{s t}$ row of the left-adjusted array.

REFERENCES

1. N. B. Conkwright, Introduction to the Theory of Equations, Ginn and Co., 1941, Chapter X.
2. E-2487, Elementary Problem Section, Amer. Math. Monthly, Aug.-Sept., 1974.
3. Trudy Tong, "Some Properties of the Tribonacci Sequence and the Special Lucas Sequence," San Jose State University, Master's Thesis, 1970.
4. I. J. Schwatt, Operations with Series, Chelsea Pub. Co., New York, N.Y. (Reprint of 1924 book).
5. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Multisection of the Fibonacci Convolution Array and Generalized Lucas Sequences," The Fibonacci Quarterly, to appear.
6. John Riordan, An Introduction to Combinatorial Analysis, Wiley \& Sons, Inc., Pub., N.Y., 1958. Problem 27, p. 47.
7. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Diagonal Sums of Generalized Pascal Triangles," The Fibonacci Quarterly, Vol. 7, No. 4, Nov. 1969, pp. 341-358.
8. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Diagonal Sums of the Trinomial Triangle," The Fibonacci Quarterly, Vol. 12, No. 1, Feb. 1974, pp. 47-50.

因

[Continued from p. 122.]

From this we have that
(3)

$$
L(F(n))=\frac{f(n+1)-(-1)^{F(n+2)} f(n-2)}{f(n-1)}
$$

Now, letting $a=F(n), b=F(n+1)$ in (2), we have
(4)

$$
5 f(n) f(n+1)=L(F(n+2))-(-1)^{F(n)} L(F(n-1))
$$

Finally, substituting (3) for each term on the right of (4) and rearranging gives the required recursion. It is interesting to note that a $5^{\text {th }}$ order recursion for $f(n)$ exists, but it is much more complicated.

Proposition.

$f(n)=\frac{\left(5 f(n-2)^{2}+2(-1)^{F(n+1)}\right) f(n-3)^{2} f(n-4)+f(n-2)\left(f(n-2)-(-1)^{F(n-1)} f(n-5)\right)\left(f(n-1)-(-1)^{F(n)} f(n-4)\right)}{2 f(n-4) f(n-3)}$
Proof. Use Equation (2) and the identity
(5)

$$
L(a) L(b)=L(a+b)+(-1)^{a} L(b-a)
$$

to obtain

$$
5 f(n) f(n+1)=2 L(F(n+2))-L(F(n)) L(F(n+1))
$$

Using (3) on the right-hand side and rearranging gives the required recursion.

REFERENCES

1. R. E. Whitney, "Composition of Recursive Formulae," The Fibonacci Quarterly, Vol. 4, No. 4, pp. 363.
2. E. A. Parberry, "On Primes and Pseudo-Primes Related to the Fibonacci Sequence," The Fibonacci Quarterly, Vol. 8, No. 1, pp. 52.
