A RESULT IN ANALYTIC NUMBER THEORY

APR. 1977

REFERENCES

- 1. Raymond Ayoub, "An Introduction to the Analytic Theory of Numbers," Amer. Math. Soc., 1963.
- Eckford Cohen, "Some Sets of Integers Related to the k-Free Integers," Acta Scientiarum Mathematicarum (Szeged), 22 (1961), pp. 223-233.
- Eckford Cohen, "On the Distribution of Certain Sequences of Integers," Amer. Math. Monthly, Vol. 70 (1963), pp. 516-521.
- 4. Eckford Cohen and K. Joseph Davis, "Elementary Estimates for Certain Types of Integers," Acta Scientiarum Mathematicarum (Szeged), 31 (1970), pp. 363-371.
- 5. Paul Erdos and G. Szekeres, "Uber die Anzahl der Abelschen Gruppen Gegebener Ordnung and Uber ein Rewandtes Zahlen Theoretisches Problem," *Acta Szeged*, 7 (1934), pp. 95–102.
- Willy Feller and Erhard Tournier, "Mengentheoretische Untersuchungen von Eigenschaften der Zahlenreihe," Math. Ann., 107 (1933), pp. 188–232.
- 7. G. H. Hardy and E. M. Wright, Introduction to the Theory of Numbers, 3rd Ed., Oxford, 1954.
- 8. Bernhard Hornfeck, "Uber Naturliche Zahlen, deren Primteiler in Mindestens k-ter Potenz Auftreten," *Math. Ann.*, 138 (1959), pp. 442-449.
- 9. K. Knopp, *Theory and Application of Infinite Series,* Blackie and Son, Ltd., London and Glasgow, 1928 (Translated from the German).
- 10. Schoenberg, "On Asymptotic Distributions of Arithmetical Functions," *Trans. Amer. Math. Soc.*, 39 (1936), pp. 315–330.

ADDITIVE PARTITIONS I

V. E. HOGGATT, JR.

San Jose State University, San Jose, California 95192

David Silverman in July 1976 found the following property of the Fibonacci Numbers. This Theorem I was subsequently proved by Ron Evans, Harry L. Nelson, David Silverman, and Krishnaswami Alladi with myself, all independently.

Theorem I. The Fibonacci Numbers uniquely split the positive integers, N, into two sets A_0 and A_1 such that

$$\begin{array}{rcl} A_0 & \cup & A_1 &= N \\ A_0 & \cap & A_1 &= \phi \end{array}$$

and so that no two members of A_0 nor two members of A_1 add up to a Fibonacci number.

Theorem. (Hoggatt) Every positive integer $n \neq F_k$ is the sum of two members of A_0 or the sum of two members of A_1 .

Theorem. (Hoggatt) Using the basic ideas above the Fibonacci Numbers uniquely split the Fibonacci Numbers, the Lucas Numbers uniquely split the Lucas Numbers and uniquely split the Fibonacci Numbers, and $\{5F\}_{n=2}^{\infty}$ uniquely splits the Lucas Sequence.
