$$
\frac{A(n k+u)}{B(n k+u)}=\frac{a_{1}+\beta_{1}\left(m_{2} / m_{1}\right)^{n}}{a_{2}+\beta_{2}\left(m_{2} / m_{1}\right)^{n}} .
$$

Hence limit of

$$
c=\lim _{n \rightarrow \infty}\{A(n k+u) / B(n k+u)\}=a_{1} / a_{2} .
$$

Notice that a_{1} and a_{2} are quadratic irrationals. Is the limit unique? Yes, by Theorem 3, we have

$$
\left|\begin{array}{cc}
A(n k+u) & B(n k+u) \\
A(n k+v) & B(n k+v)
\end{array}\right|=\operatorname{det}\left(L^{n}\right)\left|\begin{array}{ll}
A(u) & B(u) \\
A(v) & B(v)
\end{array}\right|= \pm \sigma,
$$

σ is a constant. Then

$$
\frac{A(n k+u)}{B(n k+u)}-\frac{A(n k+v)}{B(n k+v)}=\frac{ \pm \sigma}{B(n k+u) B(n k+v)}
$$

As $n \rightarrow \infty$,

$$
\frac{A(n k+u)}{B(n k+u)}-\frac{A(n k+v)}{B(n k+v)}=0 .
$$

If $c=\left[a_{1}, \cdots, a_{j}, \overline{a_{j}+1}, \cdots, \overline{a_{j+k}}\right]$, then take

$$
P=\left\{a_{1}, \cdots, a_{j}, \overline{a_{j+1}}, \cdots, \overline{a_{j+k}}\right\}
$$

as the generating sequence, the limit of c is then given by

$$
\lim _{n \rightarrow \infty} \frac{A(n k+u+j)}{B(n k+u+j)}, \quad u>0 .
$$

Remark. Actually we have proved just now a theorem in continued fractions: A continued fraction c is peridic iff a is a quadratic irrational, for which c is the continued fraction expansion.

*

ADDITIVE PARTITIONS II

V. E. HOGGATT, JR.

San Jose State University, San Jose, California 95192

Theorem (Hoggatt). The Tribonacci Numbers,

$$
1,2,4,7,13,24, \cdots, T_{n+3}=T_{n+2}+T_{n+1}+T_{n}
$$

with 3 added to the set uniquely split the positive integers and each positive integer $n \neq 3$ or $\neq T_{m}$ is the sum of two elements of A_{0} or two elements of A_{1}. (See "Additive Partitions I," page 166.)
Conjecture. Let A split the positive integers into two sets A_{0} and A_{1} and be such that $p \notin A \cup\{1,2\}$, and p is representable as the sum of two elements of A_{0} or the sum of two elements of A_{1}. We call such a set saturated (that is $A \cup\{1,2\}$). Krishnaswami Alladi asks: "Does a saturated set imply a unique additive partition?' My conjecture is that the set $\{1,2,3,4,8,13,24, \ldots\}$ is saturated but does not cause a unique split of the positive integers. Here we have added 3 and 8 to the Tribonacci sequence and deleted the 7. PauI Bruckman points out that this fails for 41. EDITOR

