THE PERIODIC GENERATING SEQUENCE
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Given an integer sequence S = {a;, ap, -} . aj > 0. Form a new sequence {r,,} by first choosing two inte-

'm-18m * fm-2, 8m € S.

gers r_7 and 7, then setting
m =

We call S a Generating Sequence.
Notice that for each rx € {r,}, we can reduce ry to ri = A(k)rg + B(k)r_7, where A(k) and B(k) are integers.

Hence {rp, r_1} can be viewed as a “’basis” for {rn} . Then,
rog = Al=Drg+B(-T)r_; = A(-1) = 0, Bf-1) =1,
B(o) = 0.

rg = A{(J)r(;+8{0)r_7 = A(0) = 1,
Suppose two sequences {r,’,} and {r,’{} are generated from the same sequence with different

Theorem 1.
choices of 17, ryand 12, rg, then
| ries T ( 7)/‘,’:1 o
R 4 B A
Proof. By induction.
Notation: Let
B L [aw s T
LA(k— 1) Blk — 7)J
Notice that
|—’k -]=/_ ro
LTk-1 L1

Lemma. det(L) = (—1)K.
Alk— g+ Blk— 1), Alklrp+ Blk)r.,

Proof.
r;(_Z e _
e 1) T VAlk— T+ Blk = 1)r”, Alklrg+ Blk)r?;
rly rp
= {Alk)B(k— 1) — Alk— 1)B(K)} |r”; 1}
r’y rp
= det(L)| 17y rg
= det(L) = (-1)k.
Theorem 2. Let
s = {a;,az, }
be the generating sequence for {r, }, then
Alm) = Alm — 1)ap, + Alm — 2)
am € S.

B(m) = B(m — 1)a,, + Blm - 2),

Proof. We have
178
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0

- 07
'm = tm-18m * Im-2 = [A(m)B’(m)]\: J'z [Alm — 1)B{m — I)II:r_7_lam

r-1
1o
+ [Alm — 2)B(m — 2}][;_ 7:]

= [A(m)B(m)] = [A(m — 1)am + Alm — 2)B/m ~ 1)apm, + B(m — 2)].
Remark: The above theorem shows that {A(n)} and {B(n)} are also sequences generated by S, Recall that
Al-1) = 0, Al0) = 1; B(-1) =1, B(0) = 0.
We shall now investigate what happens when the generating sequence is an infinite periodic sequence
P={ar, = a}.
We will let k be the period of P for the rest of our work.
Theorem 3. 1f{r,}is generated from £, then
[Alnk +u)Blnk +u)] = [Alw)Blu)]L" .
Proof. Recall

e[ B e [ ]- el

Then :
o = [Aws( [ 7]

sy = IAWBI[ ] = [AwBI L[]

ok+y = [A(U)B(U}] [::2//:_7:‘ = [AKU)B(U)'/L[;/;~7]
= [A(u}B(u)]L2[;?7] .

[t is easy to see that

ters = (B L" [0 ] = [tk + wiBtok s 0] (0] = tatwisal] e[ ]

= [Alnk+u)Blnk+u)] = [AlwB]L" .
Corollary.

Alnk +u) Blnk +u)| (_”nkl Alu) Blu)
Alnk +v) Blnk +v) Alv) Blv)

Proof . By Theorem 3, we get

[A(nk+u) B(nk+u)]: [A/u) B(u;]Ln _ Atk +u) Bink +u)| _ ’A(u} Blu)
Alnk +v) Blnk +v) Alv) Blv) " laink +v) Bink +v) Alv) B(v)

Theorem 4. If asequence {r,,}is generated from an infinite periodic sequence P with period &, then
ek — Clkrp i + (- ke, = 0,
where C(k) is a positive integer independent of the choice of r_; and rp.
Proof. Consider

det (L"),

Tn+2k T Xtk Ty = 0.

Assume the theorem is true except for the existence of x and y. We have
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Iniok * Xinsk +yrn = 0 = { [Aln + 2k)B(n + 2k)] +x[Aln + k)B(n + k)] +y[A(n)B(n)] } [;f’,] =0

- {A(n +2k)+ xAln +k)+yAln) = 0
Bln +2k)+ xB(n + k) +yB(n) = 0

These are solvable iff

_lat+k) B+ k)l
D= g g 1.

Then by Theorem 3,
[Aln + k)B(n + k)] = [Aln)B(n)]L = [Aln)A(k)+ Alk— 1)B(n)A(n)B(k) + Bin)B(k — 1)]

L p=|Am+k) Bin+k)|
Aln) B(n)

= Ain)A(KIBn) + Alk — 1)B(n)? = An)?B(k) — Aln)B(n)B(k — 1).

The only possibilities for making 0 vanish are eithern=k— 7 orn =k,
Whenn=k— 1,
D = Alk)Alk— 1)B(k — 1) — Alk— 1)2B(k) = Alk— 1) det(L) # 0.

When n =k,
D = Alk— 1)B(k)? - AlkJB(K)B(k — 1) = —B(k) det(L) # 0.

Hence x and y exist. Then letn = J, we have
A(2k) +xAlk) +yA(0) = 0, Bf2k) +xB(k) +yB(0) = 0.
Since A(0)= 1, B(0) = 0, we get
x = —B(2k)/B(k), y = Alk)[B(2k)/B(k)] — A(2k).
By Thearem 3, we obtain

[A(2K)B(2K)] = [AL0)B(0)]LZ ="[10]L? = [A(k)? + Alk — 1)BIK)A(K)B(K) + B(K)B(k — 1)] .
Thus
x = —=B(2k)/B(k) = —(Alk)+ Bk — 1)) = C(k) = Al(k)+ B(k— 1)

y = AlK)A(K) + Bk — 1)] — [A(k)? + Alk — 1)B(K)]
= Alk)Blk— 1) - Alk - 1)B(k) = det(L) = (—1)K .
Remark. Since { A(n)}and {B(n)} are also generated from P, then
Aln +2k) = ClK)A(n + k) + (—=1)XA(n) = 0 and  Bln+2k) - C(k)B(n + k) + (- 1)¥B(n) = 0.
By Theorem 3, this leads us to
[ABIJ] {L2 = ClKIL +(~1)K1} = 0 = L2 — Clk)L +det (L)I = 0,

[ is the identity matrix.
What happens when P = {a} since & can be chosen as large as one desires?

Theorem 5. Suppose {r,} is generated from 2= {a} such that
tneok — ClKIpapc + (—1)Ke, = 0,
Then {C(n)} is also a sequence generated from P with £(0)=2, C(~1) = —a.
Proof. Recall C(k) = A(k)+ B(k — 1). Then
Clk)— Clk = 1)a— Clk—2) = { Alk) = Alk— 1)a— Alk—2)} = {B(k— 1) — Blk — 2)a— B(k - 3)}

=0 = Clk) = Clk— 1)a+ Clk—2)
Also,
Cc(0) = A(0)+B(-1) = 2, (1) = A(1)+B(0) = a
But then
Cl1) = Cl0)a+C(~1) = C(—1) = —a.
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Remark. Since { C(n)} is generated from P = {2}, there exists another sequence {C"(n/} such that
Cln +2k) — C(k)C(n + k) + (-1)%C(n) = 0.
Notice that {C'(n)} = {C(n)}. For example, when P = {7}, then
. {amn)} = {fyeq)
and {B(n)} = (£}, Cln) = fres+ fn-1.{fn} is the Fibonacci sequence. Remember

Aln +2k) = ClKIA( + k) + (=1)KA() = 0 = fopopss — (Ferr + Faat g agerr +(=1)¥Fpeg = 0
and
Bln +2k) - C(k)Bln + k) + (= 1)¥Bln) = 0 = fypok — (Fers + famt nsie +(=1)5F, = 0O,

Also from Theorem 5 and the last remark,
Cln + 2k) = C(K)C(n + k) + (= 1)KC(n) = 0 = { fpioks1+ Fosoko1} = (Fier1 * Fimt/{Tatkcrt # Fatk=1}
(=1 {fpp1+ foog } = 0.
Theorem 6. Suppose{rn} is generated from P= {a—}, then there existx and y such thatu >s>t> 0,
Tntu * Xin+st Yin+e = 0,
x and y rational.
Proof. Think of n as & since the periodicity can vary.
Then follow the proof for Theorem 4. Carrying out the proof, we also find that

\A(u} Blu) | Als) Bls)
_ _law B _ A Blu)
~|Afs) Bls)| ¢ Y= T Als) Bls)
Aft) B(t) ‘A(t) B(t)
In particular, when P= {7}, we get
;u+7 ;u‘ | fsr1 fs
frp, — A1 Tt _ o furr fuly g
my [ for1 15 .-~ fs‘ it
| fre1 fr fer1 1t

For example, whenu =9, s=6and t=2,
fn+9 — (73/3)f,,+6+ /2/3))‘,,./-2 = 0

We are going to relate some of the above results to Continued Fractions.
A simple purely periodic continued fraction is denoted by ¢ = /a;, -, a5 /. If we take P = {a 1., ak}, then
immediately we see that A(n)/B(n) is the n ™ convergent of c. We also know that

Aln +2k) — Clk)A(n + k) + (— 1)%A(n) = 0 and  Bln+2k)— Clk)B(n + k) + (-1)%8(n) = 0.
If we regard these as second-order difference equations, then the auxiliary quadratic equation for them is
x2—Clkix+(-1)% = @

x = {Cth) £Jek)? - 4(-1)%}/2, (k) - a(-1)* > @
Let/m 7, mo be the distinct zeros such thatlm | >Iml, then Alnk+u)=am7+B,m3,
Blnk+u) = apm? +Bo,m%, u < k.

By choosing the appropriate initial conditions for {A(n)} and {B(n)}, respectively, we can solve for a;, B4 and
ay, Bo. One can take Afu), Alk +u) to be the initial conditions for {A(n)} and B(u), B(k + u) for {B(n)}. Then

the (nk + u)™ convergent of ¢ is given by

and
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Alnk +u) _ a1+ B3(ma/m;)”

B(ﬂk+u) a2+B2(m2/m7)n
Hence limit of

¢ = lim_{Alnk+u)/Blnk+u)} = as/az.

Notice that a; and a» are quadratic irrationals. Is the limit unique? Yes, by Theorem 3, we have
Alnk +u) Bink +u)|

_ | Aw) Blul| _
Afnk +v) Blnk +v)| = det(L7) 4n) )| = 0,
o is a constant. Then
Alnk+u)  Alnk+v) _ t0
Blnk +u) -
Asn — e,

Blnk+v)  Blnk+u)Blnk +v)

Alnk+u) _ Alnk+v) _ ,

Bink+u)  Blnk+v)

\fc = [ay, -, aj, aj+1, . aj+J, then take
P =

as the generating sequence, the limit of ¢ is then given by

lim Alnk+u+j)
P Bktuti) u > 0

Remark. Actually we have proved just now a theorem in continued fractions: A continued fraction ¢ is peri-
dic iff ais a quadratic irrational, for which ¢ is the continued fraction expansion.

Jofoiooiotok

ADDITIVE PARTITIONS 11

V.E.HOGGATT, JR.
San Jose State University, San Jose, California 95192

Theorem (Hoggatt). The Tribonacci Numbers,

1,2,8,7,13,24, -, Tpe3 = Tpeot Tper1 + Ty,

with 3 added to the set uniquely sp/it the positive integers and each positive integer n # 3 or # T, is the sum of
two elements of Ay or two elements of A;. (See “Additive Partitions |, page 166.)
Comnjecture.

Let A split the positive integers into two sets Ag and A4 and be such thatp £ Au {1,2},
and p is representable as the sum of two elements of 4 or the sum of two elements of A ;. We call such a set
saturated (that is A U {1, 2}). Krishnaswami Alladi asks: “Does a saturated setimply a unique additive parti-
tion?”” My conjecture is that the set {1, 2,3,4,8,13, 24, } is saturated but does not cause a unique split
of the positive integers. Here we have added 3 and 8 to the Tribonacci sequence and deleted the 7. Pa 11

Bruckman points out that this fails for 41. EDITOR
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