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Given an integer sequence S = [ajr 32, •••}., a,- > 0. Form a new sequence [rn] by first choosing two inte-
gers r_7 and rg, then setting 

Or? = rm~ 1 am + tm-2' am ^ «->• 

We call S a Generating Sequence. 
Notice that for each /> e {/>,}, we can reduce /> to r^~ Afkirg + B(k)r-j, where A(k) and B(k) are integers. 

Hence {rp, r-j} can be viewed as a "basis" for {rn} . Then, 

r_7 - A(-1)r0 + B(-1)r-i *+ A(-1) = 0, B(-1) = 7, 

r0 = A{Q)r0 +BfOh-t - A(O) = 7, £/W - 0. 

Theorem 1. Suppose two sequences [r'n} and {/•„} are generated from the same sequence with different 
choices of rip r'0 and rZp r'p, then 

'k-1 'k\ 
(-ir r-1 r0\ 

Proof. By induction. 
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Theorem 2. Let 
S = {31*32,"'} 

be the generating sequence for {rn}, then 

Afm) = Afm - 1km+A(m - 2) 

Bfm) = Bfm - 1)am + Bfm -2), am e S. 

Proof We have 
178 
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Then 

rm = rm-iam+rm.2 => fA(m)B(m)J^r J - [A(m-1)B(m- 1)J^\Bm 

+ [A(m - 2)B(m - 2)lY°\ 

=> [A(m)B(m)J - I Aim- 1hm + A(m-2)B(m- 1)am + B(m - 2)J. 

Remark: The above theorem shows that {A(n)} and {B(n)} are also sequences generated by S. Recall that 
A(-l) = Q, A(O) - 1; B(-1) = 1, B(O) = 0. 

We shall now investigate what happens when the generating sequence is an infinite periodic sequence 

We will let k be the period of P for the rest of our work. 
Theorem 3. If [rn\ is generated from Pf then 

[A(nk + u)B(nk + u>] = [A(u)B(u)]Ln . 

Proof. Recall 

, = \A(k) B(k) 1 . \rk I = .\r0 1 
L lA(k-U B(k-1)\ and L -̂/J Hr./J -

rk+u = [Alumuiiy^] - [A(u)B(u)Jl[^J 

r 2 ^ - Z / l W ^ y [ ^_ J - [A(u)B(u)]L[rf
k
k^] 

= [A(u)B(u)l'A2[^J . 
It is easy to see that 

/>,**# = / ^ ^ / ^ [ J 7 ] - [A(nk + u)B(nk + u)][rr°_i\= [Afu)B(u)]Ln[rr°] 

=> [A(nk + u)B(nk + u)J = [A(u)B(u)JLn . 

Corollary. 

\A(nk + u) B(nk + u)\ = (_1\nk\A(u) B(u)\ 
I A(nk + v) B(nk + v) I ' 7 / I >4M £ M I 

Proof . By Theorem 3, we get 
\A(nk+u) Sink +u)l= \A(u) B(uh, n Ufnk + u) B(nk+u)\ = \A(U) B(U)\ . . (.n i 
L / l f o * * ^ B(nk + v)\ I AM B(v)iL \A(nk + v) B(nk+v)\ \A(v) B(v)\^l{L '• 

Theorem 4. If a sequence [rn] is generated from an infinite periodic sequence P with period k, then 
rn+2k-C(k)rn+k + (-1)krn = Q, 

where C(k) is a positive integer independent of the choice of/*_/ and/£. 
Proof. Consider 

rn+2k+xrn+k+vrn = 0. 
Assume the theorem is true except for the existence of x and y. We have 
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rn+2k+xrn+k+yrn = 0 - { [Afn + 2k)B(n + 2k)] +x[A(n + k)B(n + k)] +y[A(n)B(n)])[rr°' J - 0 

[A(n+2k) + xA(n+k)+yA(n) = 0 
^ \B(n+ 2k) + xBin + k) +yB(n) = 0 

These are solvable iff 
n __ \A(n + k) B(n+k)\ 1 n 
U ~ \A(n) Bin) I f U' 

Then by Theorem 3, 

[A(n + k)B(n + k)J = [A(n)B(n)] L = [A(n)A(k) +A(k- 1)B(n)A(n)B(k) + B(n)B(k- 1)] 

=* n = I A(n + k > Bfn + k > \ 
U \A(n) Bin) I 

= A(n)A(k)B(n) + A(k- 1)B(n)2 - A(n)2B(k)- A(n)B(n)B(k - D. 

The only possibilities for making £? vanish are eithern = k- 1 oxn = k. 
When/7~/r- 7, 

D = A(k)A(k~ DBfk- 1)-A(k- l)2B(k) = Afk- Ddet(L) ? 0. 

When n = k, 
D = Afk- DB(k)2-A(k)B(k)B(k- D = -Bfk) tot U) ± 0. 

Hencex and/ exist. Then let/7 = 0, we have 

A (2 k) + xA (k) + yA (0) = 0, B(2k) + xB(k) + yB(O) = 0. 

Since A (0)= 1, B(0)= 0, we get 

x = -B(2k)/B(k)/ y = A(k)[B(2k)/B(k)] - A(2k). 

By Theorem 3, we obtain 

[A(2k)B(2k)J - [A(0)B(0)]L2 ='[1 0]L2 = [Afk)2 + Afk - l)Bfk)Afk)B(k) + B(k)B(k - D]. 
Thus 

x = -B(2k)/B(k) = -(A(k) + B(k- D) => Cfk) = Afk) + B(k- D 

y = A(k)[A(k) + B(k- DJ - [Afk)2' + Afk- 1)B(k)] 

= A(k)B(k- D- Afk- 1)B(k) = det(L) = f-1)k . 

Remark. Since {Afn)} and {Bfn)} are also generated from P, then 

Afn + 2k) - C(k)A(n + k) + f- 1)kA(n) = 0 and Bin + 2k) - C(k)B(n + k) + (- 1)kB(n) = 0. 

By Theorem 3, this leads us to 

[A(n)B(n)]{L2-C(k)L+(~l)kl} = 0 => L2- C(k)L + 6et(L)/ = Of 

I is the identity matrix. 
What happens when P~ {a } since k can be chosen as large as one desires? 

Theorem 5. Suppose {rn} is generated from P= {1} such that 

rn+2k - C(k)rn+k + f- l)krn = 0. 

Then {Cfn)} is also a sequence generated from Pwith C(0) = 2, Cf-D = -a. 

Proof. Recall Cfk) - Afk) + Bfk- D. Then 

C(k)-C(k- Da-Cfk-2) = {A(k)-A(k- Da- Afk- 2)} - {s(k- D - Bfk-2)a-Bfk-3)} 

= 0 - Cfk) = Cfk- Da + Cfk-2l 
Also, 

CfO) = A(0) + B(-D = 2, CfD = AfD + BfQ) = a. 
But then 

CfD = CfQh + Cf-D - Cf-D = -a. 
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Remark. Since [C(n)} is generated tromP = {a}, there exists another sequence [C(n)} such that 

C(n + 2k) - C'(k)C(n + k) + (- 1)kC(n) = 0. 

Notice that {C(n)} = {C(n)}. For example, when P = { 7 } , then 

[A(n)}= {fn+1} 

and [B(nj] = {fn}, C(n) = fn+i + fn-Vr{fn) 's t n e Fibonacci sequence. Remember 

A(n+2k)-C(k)A(n + k) + (-1)kA(n) - 0 ** fn+2k+i ~ (fk+1 + fk-l>fn+k+i + (~1>kfn+l « 0 
and 

B(n+2k)-C(k)B(n + k) + (-VkB(n) = 0 => fn+2k~ (fk+1 + fk-l)fn+k + (~Vkfn = 0. 

Also from Theorem 5 and the last remark, 

C(n + 2k) - C'(k)C(n + k) + (- l)kC(n) = 0 => { fn+2k+1 + fn+2k-i}~ (fk+1 + fk-l){fn+k+1 + W - / } 
+ (~1)k{fn + 1 + fn-l}= 0. 

Theorem 6. Suppose{rn} is generated from/7 = {5} , then there exist* and / such thaty > s>t> 0, 

rn +u + xrn +s + yfn +t = ft 

x and y rational. 
Proof. Think of/? as k since the periodicity can vary. 
Then follow the proof for Theorem 4. Carrying out the proof, we also find that 

x = -

In particular, \NhenP={/ } , we get 

A(u) B(u)\ 
Aft) B(t)\ 
A(s) B(s)\ ' 
Aft) Bft)\ 

I fu+1 fu 
\ft+1 ft 

\fs+1 fs 
\ft+1 ft 

fn+s~ 

v - -

fs+1 
f«+1 

fs+1 
ft+1 

\Afs) Bfs) 
\Afu) Bfu) 
\Afs) Bfs)\ 
\Aft) Bft)\ 

fs 
fu 
fs 
ft 

fn+t ~ 'n+u 

For example, when u = 9, s= 6 and f = 2, 

fn+9 - (13/3)fn+6 + (2/3)fn+2 = 0. 

We are going to relate some of the above results to Continued Fractions. 
A simple purely periodic continued fraction is denoted by c= /a 7, —, a^]. If we takeP= [a 7, —, a^l, then 

immediately we see that A(n)/B(n) is the nth convergent of c. We also know that 

A(n+ 2k) - C(k)A(n + k) + (- 1)kA(n) = 0 and B(n + 2k) - C(k)B(n + k) + (- 1)kB(n) - 0. 

If we regard these as second-order difference equations, then the auxiliary quadratic equation for them is 

x2-C(k)x + (-l)k - 0 
and r— 

x = [C(k)+Jc(k)2-4(-l)k}/2, C(k)2-4(-1)k > 0. 

Let/777, /??2be the distinct zeros such that I/77 /I >\m2\, then A(nk + u) = a^m" + ̂ 1m
n

2 , 

B(nk + u) = a2mrj + $2m2' u < k-

By choosing the appropriate initial conditions for {A(n)} and {B(n)\, respectively, we can solve for 0,7, j37 and 
a2, fo. One can take A(u), A(k + u) to be the initial conditions for {A(n)} and B(u), B(k + u) for {B(n)\ Then 
the {nk + u)th convergent of c is given by 
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Afnjrtu) _ ai+^i(m2/m1)
n 

a2 + $2(m2/m1)
n B(nk + u) 

Hence limit of 
c = Wm^Afnk + u)/B(nk + u)) = a1/a2. 

Notice that a ; and a2 are quadratic irrationals. Is the limit unique? Yes, by Theorem 3, we have 

a is a constant. Then 

As/? 

A(nk+u} B(nk + u)\ = HD+ / / n . 
A(nk+v) B(nk + v)\ Q e T f L ' 

A(nk + u) Afnk + v) 

A(u) B(u) 
A(v) B(v) 

±0 

B(nk + u) B(nk + v) B(nk +u)B(nk + v) 

A(nk + u) _ A(nk + v) = 

B(nk + u) B(nk + v) 
0. 

If c = [a-i, - , aj, aj+i, •••, aj+^J, then take 

P s {a1f -faj,aj+1, 

as the generating sequence, the limit of c is then given by 
*j+k j 

l im 
n —> o 

Mnkjjltjl Q 
B(nk + u+j) ' 

Remark. Actually we have proved just now a theorem in continued fractions: A continued fraction c is peri-
die iff a is a quadratic irrational, for which c is the continued fraction expansion. 

******* 
ADDITIVE PARTITIONS II 

V. E.HOGGATTJR. 
San Jose State University, San Jose, California 95192 

Theorem (Hoggatt). The Tribonacci Numbers, 
1, 2,4, 7, 13, 24,.-., Tn+3 = Tn+2 +Tn+1+Tn, 

with 3 added to the set uniquely split the positive integers and each positive integer/7 / J o r / Tm is the sum of 
two elements tf A0 or two elements of A^. (See "Additive Partitions I," page 166.) 

Conjecture. Let A split the positive integers into two sets AQ and A± and be such thatp^Au {1,2}, 
and/? is representable as the sum of two elements of AQ or the sum of two elements of A±. We call such a set 
saturated (that is A u { 1 , 2}). Krishnaswami Alladi asks: "Does a saturated set imply a unique additive parti-
tion?" My conjecture is that the set { l , 2, 3,4, 8, 13, 24, •••} is saturated but does not cause a unique split 
of the positive integers. Here we have addled 3 and 8 to the Tribonacci sequence and deleted the 7. Paul 

Bruckman points out that this fails for 41* EDI TOE 


