THE PERIODIC GENERATING SEQUENCE

CHI-LEUNG LAU
Teaching Fellow, University of Oregon, Eugene, Oregon

Given an integer sequence $S=\left\{a_{1}, a_{2}, \cdots\right\}, a_{i}>0$. Form a new sequence $\left\{r_{n}\right\}$ by first choosing two integers r_{-1} and r_{0}, then setting

$$
r_{m}=r_{m-1} a_{m}+r_{m-2}, \quad a_{m} \in S
$$

We call S a Generating Sequence.
Notice that for each $r_{k} \in\left\{r_{n}\right\}$, we can reduce r_{k} to $r_{k}=A(k) r_{0}+B(k) r_{-1}$, where $A(k)$ and $B(k)$ are integers. Hence $\left\{r_{0}, r_{-1}\right\}$ can be viewed as a "basis" for $\left\{r_{n}\right\}$. Then,

$$
\begin{gathered}
r_{-1}=A(-1) r_{0}+B(-1) r_{-1} \Rightarrow A(-1)=0, \quad B(-1)=1, \\
r_{0}=A(0) r_{0}+B(0) r_{-1} \Rightarrow A(0)=1, \quad B(0)=0 .
\end{gathered}
$$

Theorem 1. Suppose two sequences $\left\{r_{n}^{\prime}\right\}$ and $\left\{r_{n}^{\prime \prime}\right\}$ are generated from the same sequence with different choices of $r_{-1}^{\prime}, r_{0}^{\prime}$ and $r_{-1}^{\prime \prime}, r_{0}^{\prime \prime}$, then

$$
\left|\begin{array}{ll}
r_{k-1}^{\prime} & r_{k}^{\prime} \\
r_{k-1}^{\prime \prime} & r_{k}^{\prime \prime}
\end{array}\right|=(-1)^{k}\left|\begin{array}{ll}
r_{-1}^{\prime} & r_{0}^{\prime} \\
r_{-1}^{\prime \prime} & r_{0}^{\prime \prime}
\end{array}\right|
$$

Proof. By induction.
Notation: Let

$$
L=\left[\begin{array}{ll}
A(k) & B(k) \\
A(k-1) & B(k-1)
\end{array}\right] .
$$

Notice that

$$
\left[\begin{array}{l}
r_{k} \\
r_{k-1}
\end{array}\right]=L\left[\begin{array}{c}
r_{0} \\
r_{-1}
\end{array}\right]
$$

Lemma. $\operatorname{det}(L)=(-1)^{k}$.
Proof.

$$
\begin{aligned}
\left|\begin{array}{cc}
r_{k-1}^{\prime} & r_{k}^{\prime} \\
r_{k-1}^{\prime \prime} & r_{k}^{\prime \prime}
\end{array}\right| & =\left|\begin{array}{ll}
A(k-1) r_{0}^{\prime}+B(k-1) r_{-1}^{\prime} & A(k) r_{0}^{\prime}+B(k) r_{-1}^{\prime} \\
A(k-1) r_{0}^{\prime \prime}+B(k-1) r_{-1}^{\prime \prime} & A(k) r_{0}^{\prime \prime}+B(k) r_{-1}^{\prime \prime}
\end{array}\right| \\
& =\{A(k) B(k-1)-A(k-1) B(k)\}\left|\begin{array}{ll}
r_{-1}^{\prime} & r_{0}^{\prime} \\
r_{-1}^{\prime \prime} & r_{0}^{\prime \prime}
\end{array}\right| \\
& =\operatorname{det}(L)\left|\begin{array}{ll}
r_{-1}^{\prime} & r_{0}^{\prime} \\
r_{-1}^{\prime \prime} & r_{0}^{\prime \prime}
\end{array}\right| \\
& \Rightarrow \operatorname{det}(L)=(-1)^{k} .
\end{aligned}
$$

Theorem 2. Let

$$
S=\left\{a_{1}, a_{2}, \cdots\right\}
$$

be the generating sequence for $\left\{r_{n}\right\}$, then

$$
\begin{aligned}
& A(m)=A(m-1) a_{m}+A(m-2) \\
& B(m)=B(m-1) a_{m}+B(m-2), \quad a_{m} \in S
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
r_{m}=r_{m-1} a_{m}+r_{m-2} \Rightarrow[A(m) B(m)]\left[\begin{array}{l}
r_{0} \\
r_{-1}
\end{array}\right]= & {[A(m-1) B(m-1)]\left[\begin{array}{l}
r_{0} \\
r_{-1}
\end{array}\right] a_{m} } \\
& +[A(m-2) B(m-2)]\left[\begin{array}{l}
r_{0} \\
r_{-1}
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow[A(m) B(m)]=\left[A(m-1) a_{m}+A(m-2) B(m-1) a_{m}+B(m-2)\right] .
$$

Remark: The above theorem shows that $\{A(n)\}$ and $\{B(n)\}$ are also sequences generated by S. Recall that

$$
A(-1)=0, \quad A(0)=1 ; \quad B(-1)=1, \quad B(0)=0 .
$$

We shall now investigate what happens when the generating sequence is an infinite periodic sequence

$$
P=\left\{\overline{a_{1}, \cdots, a_{k}}\right\} .
$$

We will let k be the period of P for the rest of our work.
Theorem 3. If $\left\{r_{n}\right\}$ is generated from P, then

$$
[A(n k+u) B(n k+u)]=[A(u) B(u)] L^{n} .
$$

Proof. Recall

$$
L=\left[\begin{array}{ll}
A(k) & B(k) \\
A(k-1) & B(k-1)
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
r_{k} \\
r_{k-1}
\end{array}\right]=L\left[\begin{array}{l}
r_{0} \\
r_{-1}
\end{array}\right] .
$$

Then

$$
\begin{aligned}
& r_{u}=[A(u) B(u)]\left[\begin{array}{l}
r_{0} \\
r_{-1}
\end{array}\right] \\
& r_{k+u}=[A(u) B(u)]\left[\begin{array}{l}
r_{k} \\
r_{k-1}
\end{array}\right]=[A(u) B(u)] L\left[\begin{array}{l}
r_{0} \\
r_{-1}
\end{array}\right] \\
& r_{2 k+u}=[A(u) B(u)]\left[\begin{array}{l}
r_{2 k} \\
r_{2 k-1}
\end{array}\right]=[A(u) B(u)] L\left[\begin{array}{l}
r_{k} \\
r_{k-1}
\end{array}\right] \\
&=[A(u) B(u)] L^{2}\left[\begin{array}{l}
r_{0} \\
r_{-1}
\end{array}\right] .
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
r_{n k+u}=[A(u) B(u)] L^{n}\left[\begin{array}{l}
r_{0} \\
r_{-1}
\end{array}\right] & \Rightarrow[A(n k+u) B(n k+u)]\left[\begin{array}{l}
r_{0} \\
r_{-1}
\end{array}\right]=[A(u) B(u)] L^{n}\left[\begin{array}{l}
r_{0} \\
r_{-1}
\end{array}\right] \\
& \Rightarrow[A(n k+u) B(n k+u)]=[A(u) B(u)] L^{n} .
\end{aligned}
$$

Corollary.

$$
\left|\begin{array}{cc}
A(n k+u) & B(n k+u) \\
A(n k+v) & B(n k+v)
\end{array}\right|=(-1)^{n k}\left|\begin{array}{ll}
A(u) & B(u) \\
A(v) & B(v)
\end{array}\right|
$$

Proof. By Theorem 3, we get

$$
\left[\begin{array}{cc}
A(n k+u) & B(n k+u) \\
A(n k+v) & B(n k+v)
\end{array}\right]=\left[\begin{array}{cc}
A(u) & B(u) \\
A(v) & B(v)
\end{array}\right] L^{n} \Rightarrow\left|\begin{array}{cc}
A(n k+u) & B(n k+u) \\
A(n k+v) & B(n k+v)
\end{array}\right|=\left|\begin{array}{cc}
A(u) & B(u) \\
A(v) & B(v)
\end{array}\right| \operatorname{det}\left(L^{n}\right) .
$$

Theorem 4. If a sequence $\left\{r_{n}\right\}$ is generated from an infinite periodic sequence P with period k, then

$$
r_{n+2 k}-C(k) r_{n+k}+(-1)^{k} r_{n}=0
$$

where $C(k)$ is a positive integer independent of the choice of r_{-1} and r_{0}.
Proof. Consider

$$
r_{n+2 k}+x r_{n+k}+y r_{n}=0
$$

Assume the theorem is true except for the existence of x and y. We have

$$
\begin{aligned}
r_{n+2 k}+x r_{n+k}+y r_{n}=0 & \Rightarrow\{[A(n+2 k) B(n+2 k)]+x[A(n+k) B(n+k)]+y[A(n) B(n)]\}\left[\begin{array}{l}
r_{0} \\
r_{-1}
\end{array}\right]=0 \\
& \Rightarrow\left\{\begin{array}{l}
A(n+2 k)+x A(n+k)+y A(n)=0 \\
B(n+2 k)+x B(n+k)+y B(n)=0
\end{array}\right.
\end{aligned}
$$

These are solvable iff

$$
D=\left|\begin{array}{ll}
A(n+k) & B(n+k) \\
A(n) & B(n)
\end{array}\right| \neq 0 .
$$

Then by Theorem 3,

$$
\begin{aligned}
{[A(n+k) B(n+k)] } & =[A(n) B(n)] L=[A(n) A(k)+A(k-1) B(n) A(n) B(k)+B(n) B(k-1)] \\
\Rightarrow D & =\left|\begin{array}{cc}
A(n+k) & B(n+k) \\
A(n) & B(n)
\end{array}\right| \\
& =A(n) A(k) B(n)+A(k-1) B(n)^{2}-A(n)^{2} B(k)-A(n) B(n) B(k-1) .
\end{aligned}
$$

The only possibilities for making D vanish are either $n=k-1$ or $n=k$.
When $n=k-1$.

$$
D=A(k) A(k-1) B(k-1)-A(k-1)^{2} B(k)=A(k-1) \operatorname{det}(L) \neq 0 .
$$

When $n=k$,

$$
D=A(k-1) B(k)^{2}-A(k) B(k) B(k-1)=-B(k) \operatorname{det}(L) \neq 0 .
$$

Hence x and y exist. Then let $n=0$, we have

$$
A(2 k)+x A(k)+y A(0)=0, \quad B(2 k)+x B(k)+y B(0)=0 .
$$

Since $A(0)=1, B(0)=0$, we get

$$
x=-B(2 k) / B(k), \quad y=A(k)[B(2 k) / B(k)]-A(2 k) .
$$

By Theorem 3, we obtain

$$
[A(2 k) B(2 k)]=[A(0) B(0)] L^{2}=[10] L^{2}=\left[A(k)^{2}+A(k-1) B(k) A(k) B(k)+B(k) B(k-1)\right]
$$

Thus

$$
\begin{gathered}
x=-B(2 k) / B(k)=-(A(k)+B(k-1)) \Rightarrow C(k)=A(k)+B(k-1) \\
y=A(k)[A(k)+B(k-1)]-\left[A(k)^{2}+A(k-1) B(k)\right] \\
\\
=A(k) B(k-1)-A(k-1) B(k)=\operatorname{det}(L)=(-1)^{k} .
\end{gathered}
$$

Remark. Since $\{A(n)\}$ and $\{B(n)\}$ are also generated from P, then

$$
A(n+2 k)-C(k) A(n+k)+(-1)^{k} A(n)=0 \quad \text { and } \quad B(n+2 k)-C(k) B(n+k)+(-1)^{k} B(n)=0 .
$$

By Theorem 3, this leads us to

$$
\left.[A(n) B(n)]\left\{L^{2}-C(k) L+(-1)^{k}\right]\right\}=0 \Rightarrow L^{2}-C(k) L+\operatorname{det}(L) \|=0,
$$

I is the identity matrix.
What happens when $P=\{\bar{a}\}$ since k can be chosen as large as one desires?
Theorem 5. Suppose $\left\{r_{n}\right\}$ is generated from $P=\{\bar{a}\}$ such that

$$
r_{n+2 k}-C(k) r_{n+k}+(-1)^{k} r_{n}=0
$$

Then $\{C(n)\}$ is also a sequence generated from P with $C(0)=2, C(-1)=-a$.
Proof. Recall $C(k)=A(k)+B(k-1)$. Then

$$
\begin{aligned}
C(k)-C(k-1) a-C(k-2) & =\{A(k)-A(k-1) a-A(k-2)\}-\{B(k-1)-B(k-2) a-B(k-3)\} \\
& =0 \Rightarrow C(k)=C(k-1) a+C(k-2) .
\end{aligned}
$$

Also,
But then

$$
C(0)=A(0)+B(-1)=2, \quad C(1)=A(1)+B(0)=a .
$$

But then

$$
C(1)=C(0)_{a}+C(-1) \Rightarrow C(-1)=-a .
$$

Remark. Since $\{C(n)\}$ is generated from $P=\{\bar{a}\}$, there exists another sequence $\left\{C^{\prime}(n)\right\}$ such that

$$
C(n+2 k)-C^{\prime}(k) C(n+k)+(-1)^{k} C(n)=0 .
$$

Notice that $\left\{c^{\prime}(n)\right\}=\{c(n)\}$. For example, when $P=\{\bar{\gamma}\}$, then

$$
\{A(n)\}=\left\{f_{n+1}\right\}
$$

and $\{B(n)\}=\left\{f_{n}\right\}, C(n)=f_{n+1}+f_{n-1, r}\left\{f_{n}\right\}$ is the Fibonacci sequence. Remember

$$
A(n+2 k)-C(k) A(n+k)+(-1)^{k} A(n)=0 \Rightarrow f_{n+2 k+1}-\left(f_{k+1}+f_{k-1}\right) f_{n+k+1}+(-1)^{k} f_{n+1}=0
$$

and

$$
B(n+2 k)-C(k) B(n+k)+(-1)^{k} B(n)=0 \Rightarrow f_{n+2 k}-\left(f_{k+1}+f_{k-1}\right) f_{n+k}+(-1)^{k} f_{n}=0 .
$$

Also from Theorem 5 and the last remark,

$$
\begin{aligned}
C(n+2 k)-C^{\prime}(k) C(n+k)+(-1)^{k} C(n)=0 & \Rightarrow\left\{f_{n+2 k+1}+f_{n+2 k-1}\right\}-\left(f_{k+1}+f_{k-1}\right)\left\{f_{n+k+1}+f_{n+k-1}\right\} \\
& +(-1)^{k}\left\{f_{n+1}+f_{n-1}\right\}=0 .
\end{aligned}
$$

Theorem 6. Suppose $\left\{r_{n}\right\}$ is generated from $P=\{\bar{a}\}$, then there exist x and y such that $u \geqslant s>t \geqslant 0$,

$$
r_{n+u}+x r_{n+s}+y r_{n+t}=0,
$$

x and y rational.
Proof. Think of n as k since the periodicity can vary.
Then follow the proof for Theorem 4. Carrying out the proof, we also find that

$$
x=-\left|\begin{array}{ll}
A(u) & B(u) \\
A(t) & B(t)
\end{array}\right|, \quad y=-\left|\begin{array}{ll}
A(s) & B(s) \\
A(t) & B(t)
\end{array}\right|, \quad\left|\begin{array}{ll}
A(u) & B(s) \\
A(s) & B(u)
\end{array}\right| .\left|\begin{array}{ll}
A(s) & B(s) \\
A(t) & B(t)
\end{array}\right| .
$$

In particular, when $P=\{\bar{I}\}$, we get

$$
f_{n+u}-\left|\begin{array}{l}
f_{u+1} \\
f_{u} \\
f_{t+1}
\end{array}\right| \frac{f_{t}}{f_{t}}\left|\begin{array}{ll}
f_{s+1} & f_{s} \\
f_{t+1} & f_{t}
\end{array}\right| \quad f_{n+s}-\left|\begin{array}{cc}
f_{s+1} & f_{s} \\
f_{y+1} & f_{u}
\end{array}\right| f_{n+t}=0
$$

For example, when $u=9, s=6$ and $t=2$,

$$
f_{n+9}-(13 / 3) f_{n+6}+(2 / 3) f_{n+2}=0
$$

We are going to relate some of the above results to Continued Fractions.
A simple purely periodic continued fraction is denoted by $c=\left[\overline{a_{1}, \cdots, a_{k}}\right]$. If we take $P=\left\{\overline{a_{1}, \cdots, a_{k}}\right\}$, then immediately we see that $A(n) / B(n)$ is the $n^{\text {th }}$ convergent of c. We also know that

$$
A(n+2 k)-C(k) A(n+k)+(-1)^{k} A(n)=0 \quad \text { and } \quad B(n+2 k)-C(k) B(n+k)+(-1)^{k} B(n)=0 .
$$

If we regard these as second-order difference equations, then the auxiliary quadratic equation for them is

$$
x^{2}-c(k) x+(-1)^{k}=0
$$

and

$$
x=\left\{C(k) \pm \sqrt{C(k)^{2}-4(-1)^{k}}\right\} / 2, \quad C(k)^{2}-4(-1)^{k}>0 .
$$

Let m_{1}, m_{2} be the distinct zeros such that $\left|m_{1}\right|>\left|m_{2}\right|$, then $A(n k+u)=a_{1} m_{1}^{n}+\beta_{1} m_{2}^{n}$,

$$
B(n k+u)=a_{2} m_{1}^{n}+\beta_{2} m_{2}^{n}, \quad u<k .
$$

By choosing the appropriate initial conditions for $\{A(n)\}$ and $\{B(n)\}$, respectively, we can solve for a_{1}, β_{1} and a_{2}, β_{2}. One can take $A(u), A(k+u)$ to be the initial conditions for $\{A(n)\}$ and $B(u), B(k+u)$ for $\{B(n)\}$. Then the $(n k+u)^{t h}$ convergent of c is given by

$$
\frac{A(n k+u)}{B(n k+u)}=\frac{a_{1}+\beta_{1}\left(m_{2} / m_{1}\right)^{n}}{a_{2}+\beta_{2}\left(m_{2} / m_{1}\right)^{n}} .
$$

Hence limit of

$$
c=\lim _{n \rightarrow \infty}\{A(n k+u) / B(n k+u)\}=a_{1} / a_{2} .
$$

Notice that a_{1} and a_{2} are quadratic irrationals. Is the limit unique? Yes, by Theorem 3, we have

$$
\left|\begin{array}{cc}
A(n k+u) & B(n k+u) \\
A(n k+v) & B(n k+v)
\end{array}\right|=\operatorname{det}\left(L^{n}\right)\left|\begin{array}{ll}
A(u) & B(u) \\
A(v) & B(v)
\end{array}\right|= \pm \sigma,
$$

σ is a constant. Then

$$
\frac{A(n k+u)}{B(n k+u)}-\frac{A(n k+v)}{B(n k+v)}=\frac{ \pm \sigma}{B(n k+u) B(n k+v)}
$$

As $n \rightarrow \infty$,

$$
\frac{A(n k+u)}{B(n k+u)}-\frac{A(n k+v)}{B(n k+v)}=0 .
$$

If $c=\left[a_{1}, \cdots, a_{j}, \overline{a_{j}+1}, \cdots, \overline{a_{j+k}}\right]$, then take

$$
P=\left\{a_{1}, \cdots, a_{j}, \overline{a_{j+1}}, \cdots, \overline{a_{j+k}}\right\}
$$

as the generating sequence, the limit of c is then given by

$$
\lim _{n \rightarrow \infty} \frac{A(n k+u+j)}{B(n k+u+j)}, \quad u>0 .
$$

Remark. Actually we have proved just now a theorem in continued fractions: A continued fraction c is peridic iff a is a quadratic irrational, for which c is the continued fraction expansion.

*

ADDITIVE PARTITIONS II

V. E. HOGGATT, JR.

San Jose State University, San Jose, California 95192

Theorem (Hoggatt). The Tribonacci Numbers,

$$
1,2,4,7,13,24, \cdots, T_{n+3}=T_{n+2}+T_{n+1}+T_{n}
$$

with 3 added to the set uniquely split the positive integers and each positive integer $n \neq 3$ or $\neq T_{m}$ is the sum of two elements of A_{0} or two elements of A_{1}. (See "Additive Partitions I," page 166.)
Conjecture. Let A split the positive integers into two sets A_{0} and A_{1} and be such that $p \notin A \cup\{1,2\}$, and p is representable as the sum of two elements of A_{0} or the sum of two elements of A_{1}. We call such a set saturated (that is $A \cup\{1,2\}$). Krishnaswami Alladi asks: "Does a saturated set imply a unique additive partition?' My conjecture is that the set $\{1,2,3,4,8,13,24, \ldots\}$ is saturated but does not cause a unique split of the positive integers. Here we have added 3 and 8 to the Tribonacci sequence and deleted the 7. PauI Bruckman points out that this fails for 41. EDITOR

