$$
\sum_{i=0}^{[(n+1) / 2]}\binom{n-i}{i}_{r}=F_{n+1}
$$

where

$$
\binom{n-i}{i}_{r}
$$

is the polynomial coefficient in the $i^{\text {th }}$ column and $(n-i)^{s t}$ row of the left-adjusted array.

REFERENCES

1. N. B. Conkwright, Introduction to the Theory of Equations, Ginn and Co., 1941, Chapter X.
2. E-2487, Elementary Problem Section, Amer. Math. Monthly, Aug.-Sept., 1974.
3. Trudy Tong, "Some Properties of the Tribonacci Sequence and the Special Lucas Sequence," San Jose State University, Master's Thesis, 1970.
4. I. J. Schwatt, Operations with Series, Chelsea Pub. Co., New York, N.Y. (Reprint of 1924 book).
5. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Multisection of the Fibonacci Convolution Array and Generalized Lucas Sequences," The Fibonacci Quarterly, to appear.
6. John Riordan, An Introduction to Combinatorial Analysis, Wiley \& Sons, Inc., Pub., N.Y., 1958. Problem 27, p. 47.
7. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Diagonal Sums of Generalized Pascal Triangles," The Fibonacci Quarterly, Vol. 7, No. 4, Nov. 1969, pp. 341-358.
8. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Diagonal Sums of the Trinomial Triangle," The Fibonacci Quarterly, Vol. 12, No. 1, Feb. 1974, pp. 47-50.

因

[Continued from p. 122.]

From this we have that
(3)

$$
L(F(n))=\frac{f(n+1)-(-1)^{F(n+2)} f(n-2)}{f(n-1)}
$$

Now, letting $a=F(n), b=F(n+1)$ in (2), we have
(4)

$$
5 f(n) f(n+1)=L(F(n+2))-(-1)^{F(n)} L(F(n-1))
$$

Finally, substituting (3) for each term on the right of (4) and rearranging gives the required recursion. It is interesting to note that a $5^{\text {th }}$ order recursion for $f(n)$ exists, but it is much more complicated.

Proposition.

$f(n)=\frac{\left(5 f(n-2)^{2}+2(-1)^{F(n+1)}\right) f(n-3)^{2} f(n-4)+f(n-2)\left(f(n-2)-(-1)^{F(n-1)} f(n-5)\right)\left(f(n-1)-(-1)^{F(n)} f(n-4)\right)}{2 f(n-4) f(n-3)}$
Proof. Use Equation (2) and the identity
(5)

$$
L(a) L(b)=L(a+b)+(-1)^{a} L(b-a)
$$

to obtain

$$
5 f(n) f(n+1)=2 L(F(n+2))-L(F(n)) L(F(n+1))
$$

Using (3) on the right-hand side and rearranging gives the required recursion.

REFERENCES

1. R. E. Whitney, "Composition of Recursive Formulae," The Fibonacci Quarterly, Vol. 4, No. 4, pp. 363.
2. E. A. Parberry, "On Primes and Pseudo-Primes Related to the Fibonacci Sequence," The Fibonacci Quarterly, Vol. 8, No. 1, pp. 52.
