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For any prime p I give a simple proof that there are infinitely many primesq = -\ mod/7, a special case of 
Dirichlet's Theorem that if g.c.d. (a,m) = 1 there are infinitely many primes =a (mod m). The proof is of inter-
est in that it utilizes several number-theoretic properties of the Fibonacci Numbers, which are also developed 
herein, 

In this paper Fn represents the Pseudo-Fibonacci Numbers, defined as FQ = 0, F-j = 1, and Fn+-j = aFn +bFn.j, 
where a and b are non-zero relatively prime integers. 

Fn may then be written non-recursively as 

ia + ̂ ]a~rT4b\n / a - s/a
r+~4b \n 

d) /:„ = Jz_r_LLL_n—L . 
sja2 +4b 

For a derivation of this result see Niven and Zuckerman [1 ] . 
We will need the following lemmas: 
Lemma 1. For any positive integer r that divides Fn for some n, let h be the smallest positive integer such 

that r divides f/,. Then h is a divisor of n. 

Lemma 2. For any positive integer /?, g.c.d. (Fn, b) = 1. 

These results are noted in a paper by Hoggatt and Long [2] . 

Lemma 3. For any odd primes, 
q-1 

(2) Fq ^(a2 + 4b)2 (mod?) 
9zl 

(3) 2Fq+1 =a(a2 + 4b]2 +a (mod?) 
<3z± 

(4) 2bFq-i = ~a(a2 + 4b) 2 +a (mod q). 

Proof of Lemma 3. Replacing n by q in (1), expanding the right-hand side by the binomial expansion, 
and multiplying by 2q~ we get modulo?, 

2q"1Fq = (a2 + 4b) 2 . 

This gives (2) because 2q~ = 1 mod q. 
Similarly, if we replace n by q + 1 in (1) and expand, noting that ( g + 7 ) =0mod q for2 < / ' < ? - 7, and 

then multiply by 2q, we get 
q-1 

2qFq+1 = (q+1)a(a2 + 4b) 2 +(q + 1)aq (mod?). 

this reduces to (3) by use of aq =a mod ?. Then (4) follows from (2) and (3) and the equality 

2Fq+1 = 2aFq+2bFq-.<i. 

Theorem (Dirichlet). For any primep there exist infinitely many primes? = —1 (mod/?). 
Proof lip = 2 every odd prime satisfies? = - 1 (mod 2). So henceforth let/? be a fixed odd prime. Suppose 
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there are only finitely many primes q-j, q2, —, qm satisfying the congruence. By Theorem 2.27, Chapter 2 of 
Niven and Zuckerman [3 ] , there exist (p.- 1)/2 positive integers k < p - /satisfying k*p~"/2' = 1 mod p. 
Hence there also exist (p - 1)/2 positive integers/ < p - 1 satisfying y ' ^ " = - 1 mod/?. Let X be one of 
these positive integers/and define the positive integers a = 2, 

m 
0 = \ \ \ q f t b = 46-1. 

1=1 
It follows that 

(5) a2 + 4b = 160, i ± ^ - t ^ b = 7+2^0 m 

Using these values of a and/7 in<1) and using (2) from Lemma 3 with q replaced by/?, we see that 
p-1 P-1 P-1 

(6) Fp = (a2 + 4b) 2 = (166) 2 = 4P~]'(Uqjf^X2 ss - / (mod/?). 

Also from (]) and (5) we see that 

(7, Fp = lI±M]Lzti=l^, Fp s p ( m o d m, 
P 4^/6 P 

where the second result here is obtained by expanding the first result and taking everything modulo 40. 
Now let q be a prime factor of Fp. From (6) we see that q? p, and from the second part of (7) we see that? 

is not a divisor of 46, so? is different from the primes 2, qj, q2, —, qm • 
We note that 

q-1 q-1 q-1 g-1 

(a2 + 4b) 2 = (160) 2 = 4q-1(nqj)
q-1\2 = \ 2 EE e mod?, 

where e = +1 ore= - 1 . 
If e = +1 we use (4) from Lemma 3 to conclude that? is a divisor of 2bFQ-j. Butq is odd and by Lemma 2 is 

not a divisor of b, since (Fp, b)= 1 and q is a divisor of Fp, and so? is a divisor of Fq„f. By Lemma 1,wiith n 
replaced by q - 7, h replaced by /7, and r by q, we see that/7 is a divisor of ? - 1 anti$oq= 1 mod/7. Now if 
this congruence holds for every prime divisor? of Fp it would follow from the multiplication of such con-
gruences that Fp = 1 mod/7, contrary to (6). Hence we must have e= - 1 for at least one prime divisor? of Fp. 

In the case e= - 1 we use (3) from Lemma 3 to conclude that q is a divisor of 2Fq+f, and so a divisor 
of Fq+i. By Lemma 1 we see thatp is a divisor of q + 1, so q =—1 (mod/?), contrary to the assumption that 
Q1 r Q2> '"> Qm a r e t n e o n ' y primes satisfying this congruence. Q.E.D. 

Corollary. From the same analysis used to establish the above result, with a = 2 and b = 4\- 1 substitut-
ed into (1),/7-1, for any prime/7 

F - (1+2j\)p-(1-2^fk)p 

is divisible by a prime ? = -1 fmod/7)s Since \<p - 1, a prime 

q = - 1 (mod/?) < (2jj^l + Dp • 

For a proof of the existence of infinitely many primes q = - 1 (mod m), (m any positive integer > 2) using 
polynomial theory, see Nagell [4] . For a simple proof of the existence of infinitely many primes? = 1 (mad/7?) 
see Ivan Niven and Barry Powell [5 ] . 

ADDITIONAL RESULTS 

Theorem: Consider any odd prime/? which dioes not divide (a2 +4b), where (a,b)= 1 as in (1),/7-7. 
Then Fp = 0 mod q, q prime, -* q e 1 mod p or q = - 1 mod p if and only if 

(a2 + 4b)2 = 1 mod? or (a2 + 4b)2 = - 1 mod?. 
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[Co-discovered by Professor Verner E. Hoggatt, Jr., per telephone communication.] 
Proof. We have, from (1), p. 1, 

ta + sf^Tlb \p (a-J^+Jb \p 

Fp = 
x/a2 + 4b 

Multiplying both sides by 2P~7 and using the binomial expansion, we get 

(8) 2p~1Fp = pap'1 mod(a2 + 4b). 

Fp = 0 mod? -» q J( (a2+ 4b). 
Otherwise 

q\(a2 + 4b) -* 2p~1Fp == pap'1 mod q from (8), 

-> pap~ & 0 mn&q -+ q\p N q\a. 

q\p->q=p^Fp^O mod/? -> p \ (a +4b) 

by (2) of Lemma 3, contradicting the assumption that/7 J((a2 + 4b). q \a, since 

a = F2 = 0 mod q -* 2 \p 
by Lemma 1, and/7 is odd. 
• TITUS from Lemma 3, (3) and (4), q_f 

Fq+1 ~ 0 mod q iff (a2 +4b) 2 = -1 modgr 
and 

2bFq„i = 0 modq iff (a2 + 4h) = / mod q. 

Fp=0 mod q and Fq+j =0 mod q -*q = -1 mod/7 by Lemma 1 with /7 replaced by/7. Since 

p\(q+1) -* Fp \Fq+i q-j 

Therefore Fq+1 = ^ m o d ^ . Thus Fq+y = # mod gr iff q = - / mod/7. Hence (a2+4b) 2 = - / mod gr iff gr = - / 
mod^. 5z.7 

Similarly f^_; = 1 mod gr iff gr = 1 mod/7 and hence (a + 4b) = 1 mod gr iff gr == 1 mod/7 follows from 
Lemma 1, Lemma 2, and the fact that/7 |(q - 1) -+ Fp \ Fq-i. 

Conjecture. For/? any positive integer sufficiently large, there exists at least 1 prime q = ±1 mod n divid-
ing Fn. 

EXAMPLES. ^75 of the Fibonacci sequence 
= 610 = 61-10 and 61 = 1 mod 15. 
F18 = 136-19 and 19 = 1 mod 18. 
F20 = 165-41 and 41 ^ 1 mod 20. 
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