PROOF OF A SPECIAL CASE OF DIRICHLET'S THEOREM

BARRY POWELL
195 Lake Ave. West, Kirkland, Washington 98033

For any prime p | give a simple proof that there are infinitely many primes g = —1 mod p, a special case of
Dirichlet's Theorem that if g.c.d. (3,m) = 1 there are infinitely many primes =a (mod m). The proof is of inter-
est-in that it utilizes several number-theoretic properties of the Fibonacci Numbers, which are also developed
herein.

In this paper F,, represents the Pseudo-Fibonacci Numbers, definedas Fg=0, Fy =1, and F+7 = aF;, +bFp.q,
where g and b are non-zero relatively prime integers.

F,, may then be written non-recursively as

2+ JFTID\"_ (a-FTdB)"
(1) F,,=< 7 )~ 2 )

Jat +4b
For aderivation of this result see Niven and Zuckerman [1].
We will need the following lemmas:

Lemma 1. For any positive integer r that divides £, for some 7, let # be the smallest positive integer such
that r divides F,. Then A is a divisor of .

Lemma 2. For any positive integern, g.c.d. (F,, b)= 1.
These results are noted in a paper by Hoggatt and Long [2].
Lemwma 3. Forany odd prime g,

a-1

(2) Fy =(a?+45) 2 (modq)
g-1

@3) 2Fgeq = ala®+4b) 2 +a (mod q)
q-1

(4) 2bFq-1 = —a(a®+4b) 2 +a (mod q).

Proofof Lemma 3. Replacing n by g in (1), expanding the right-hand side by the binomial expansion,

and multiplying by 2977 we get modulo g, ,
q

297, = (a%+4p) 2.
This gives (2) because 2977 = 1 mod g.
Similarly, if we replace n by g + 7 in (1) and expand, noting that (q/’f 7) =0 modgfor2<i<g-1, and

then multiply by 29, we get o1

29F g+ =g+ Ta(a+4b) 2 + (g +1)a? (modgq).
this reduces to (3) by use of 37 =4 mod g. Then (4) follows from (2) and (3) and the equality
2Fyuq = 2aFy+2bFg ;.

Theorem (Dirichlet). Forany prime p there exist infinitely many primes g =—1 (mod p).
Proof. 1fp=2every odd prime satisfies g =—1 (mod 2). So henceforth let p be afixed odd prime. Suppose
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there are only finitely many primes gy, g2, -+, g, satisfying the congruence. By Theorem 2.27, Chapter 2 of
Niven and Zuckerman [3], there exist (p — 7)/2 positive integers k < p — 7 satisfying kP12 _ 1 mod p.
Hence there also exist (o — 7)/2 positive integers j <p — 1 satisfyingj(p'”/2 = —1 mod p. Let A be one of
these positive integers/ and define the positive integersa = 2,

m
0=\NJld?. b=40-1.
/=1

It follows that

(5) a2+4b = 160, H—’ﬁ—si;’—*ﬂ’ = 1+240 .
Using these values of 2 and b in{1) and using (2) from Lemma 3 with g replaced by p, we see that
p-1 p-1 p-1
(6) Fp = (32+4b} 2 _ (166) 2 2 4p_7(qu'}p_7)\ 2 = —1 (modp).
Also from (1) and (5) we see that
P o )P
(7) Fp = (”‘2\/(”4:/5/"2\/9) . Fp=p (mod4f),

where the second result here is obtained by expanding the first result and taking everything modulo 46.
Now let g be a prime factor of F,. From (6) we see that g # p, and from the second part of (7) we see that g
isnot a divisor of 40, so g is different from the primes 2, g7, g2, =, 9, -
We note that
g-1 q-1 q-1 g-1

(:2+4b) 2 = (160) 2 =49 (Mg;) "2 =22 =& modyg,
where €=+1ore=—1.

If e=+1 weuse (4) from Lemma 3 to conclude that g is a divisor of 2bFg_7. Butg is odd and by Lemma 2 is
not a divisor of b, since (Fp, b)=1and g is a divisor of £, and so g is a divisor of F_7. By Lemma 1, with n
replaced by ¢ — 7, h replaced by p, and r by g, we see that p is a divisor of g — 7 and so g = 7 mod p. Now if
this congruence holds for every prime divisor g of £, it would follow from the multiplication of such con-
gruences that £, = 1 mod p, contrary to (6). Hence we must have €= —1 for at least one prime divisor g of Fp.

In the case € = —1 we use (3) from Lemma 3 to conclude that g is a divisor of 2F;+¢, and so a divisor
of Fg+7. By Lemma 1 we see that p is a divisor of g + 7, s0 ¢ =—1 (mod p), contrary to the assumption that
g7.4q2, -, qm are the only primes satisfying this congruence. Q.E.D.

Corollary. From the same analysis used to establish the above result, with a = 2 and b = 4\ — 7 substitut-
ed into (1), p-1, for any prime p
Foo= (1+2N)P — (1- 2P
P 4Jx
is divisible by a prime g =-1{modp). Since A<p — 7, aprime

g=-1{modp) < (2 Jp=1+1).
For a proof of the existence of infinitely many primes ¢ = —1 (mod m), (m any positive integer > 2) using
polynomial theory, see Nagell [4]. For a simple proof of the existence of infinitely many primes ¢ =1 (mad m)
see Ivan Niven and Barry Powell [5].

ADDITIONAL RESULTS

Theorem: Consider any odd prime p which dioes not divide (a +4h), where (a,b)=Tasin (1), p-1.
Then £, =0 mod g, g prime, >g & 1 mod p org =—1mod p if and only if
q-1 gq-7
(a2+4p) 2 =1 mod g or (a°+4p) 2 = —1 mod q.
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[Co-discovered by Professor Verner E. Hoggatt, Jr., per telephone communication.]
Proof. We have, from (1), p. 1,

(a+j§725 )p_ (a—\/aT:Tb )p

Fp = 2
P
NETT
Multiplying both sides by 2P7T and using the binomial expansion, we get
(8) 2P, = paP™" mod (a? +4b).

Fp =0 modq — g [ (a®+4b).
Otherwise
q 5(32+4b) - 2”‘7Fp = pa” 7 modg from (8),
> paP ! =0 modg — g|p orgqla.
glp —q=p-F EOmodpep}(32+4b)
by (2) of Lemma 3, contradicting the assumption thatp /{(az +4b). q¥a, since
a=Ffr=0mod g~ 2ip
by Lemma 1, and p is odd.
" Thus from Lemma 3, (3) and (4), q-1
Fgr1 =0 modg iff (a®+4p)2 =—17 modg
and
2bFg.q = 0 modg iff (a2+4b) = 1 modq.
Fp=0modgand Fgry=0modg—g=—7modp by Lemma 1 with A replaced by p, Since
PI(II+7)—>Fp|Fq+7 q-1
Therefore F g+ =0 mod g. Thus Fgsg =0 mod g iff g =7 mod p. Hence (a%+4b) 2 =-1mod g iff g = 1
mod g. g-1
Similarly Fo—-7 = 1 mod g iff ¢ = 1 mod p and hence (a° +4b) 2 =1 mod g iffg =1 mod p follows from
Lemma 1, Lemma 2, and the fact thatp |(g — 1) — Fp | Fg-1.
Canjecture. For n any positive integer sufficiently large, there exists at least 1 prime ¢ = 7 mod » divid-
ing Fpy .
EXAMPLES. Fy5 of the Fibonacci sequence
= 610 = 61-10 and 61 = 1 mod 15.

Fig = 13619 and 19 = 1 mod 18.
Fsp = 165-41 and 41 = 1 mod 20.
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