PROOF OF A SPECIAL CASE OF DIRICHLET'S THEOREM

BARRY POWELL

195 Lake Ave. West, Kirkland, Washington 98033

For any prime p I give a simple proof that there are infinitely many primes $q \equiv-1 \bmod p$, a special case of Dirichlet's Theorem that if g.c.d. $(a, m)=1$ there are infinitely many primes $\equiv a(\bmod m)$. The proof is of interest in that it utilizes several number-theoretic properties of the Fibonacci Numbers, which are also developed herein.
In this paper F_{n} represents the Pseudo-Fibonacci Numbers, defined as $F_{0}=0, F_{1}=1$, and $F_{n+1}={ }_{a} F_{n}+b F_{n-1}$, where a and b are non-zero relatively prime integers.
F_{n} may then be written non-recursively as

$$
\begin{equation*}
F_{n}=\frac{\left(\frac{a+\sqrt{a^{2}+4 b}}{2}\right)^{n}-\left(\frac{a-\sqrt{a^{2}+4 b}}{2}\right)^{n}}{\sqrt{a^{2}+4 \bar{b}}} . \tag{1}
\end{equation*}
$$

For a derivation of this result see Niven and Zuckerman [1].
We will need the following lemmas:
Lemma 1. For any positive integer r that divides F_{n} for some n, let h be the smallest positive integer such that r divides F_{h}. Then h is a divisor of n.

Lemma 2. For any positive integer n, g.c.d. $\left(F_{n}, b\right)=1$.
These results are noted in a paper by Hoggatt and Long [2].
Lemma 3. For any odd prime q,

$$
\begin{align*}
F_{q} & \equiv\left(a^{2}+4 b\right)^{\frac{q-1}{2}}(\bmod q) \tag{2}\\
2 F_{q+1} & \equiv a\left(a^{2}+4 b\right)^{\frac{q-1}{2}}+a(\bmod q) \tag{3}\\
2 b F_{q-1} & \equiv-a\left(a^{2}+4 b\right)^{\frac{q-1}{2}}+a(\bmod q) . \tag{4}
\end{align*}
$$

Proof of Lemma 3. Replacing n by q in (1), expanding the right-hand side by the binomial expansion, and multiplying by 2^{q-1} we get modulo q.

$$
2^{q-1} F_{q} \equiv\left(a^{2}+4 b\right)^{\frac{q-1}{2}}
$$

This gives (2) because $2^{q-1} \equiv 1 \bmod q$.
Similarly, if we replace n by $q+1$ in (1) and expand, noting that $\binom{q+1}{i} \equiv 0 \bmod q$ for $2 \leqslant i \leqslant q-1$, and then multiply by 2^{q}, we get

$$
2^{q} F_{q+1} \equiv(q+1) a\left(a^{2}+4 b\right)^{\frac{q-1}{2}}+(q+1) a^{a}(\bmod q) .
$$

this reduces to (3) by use of $a^{q} \equiv a \bmod q$. Then (4) follows from (2) and (3) and the equality

$$
2 F_{q+1}=2 a F_{q}+2 b F_{q-1}
$$

Theorem (Diricblet). For any prime p there exist infinitely many primes $q \equiv-1(\bmod p)$.
Proof. If $p=2$ every odd prime satisfies $q \equiv-1(\bmod 2)$. So henceforth let p be a fixed odd p rime. Suppose
there are only finitely many primes $q_{1}, q_{2}, \cdots, q_{m}$ satisfying the congruence. By Theorem 2.27, Chapter 2 of Niven and Zuckerman [3], there exist $(p-1) / 2$ positive integers $k \leqslant p-1$ satisfying $k^{(p-1) / 2} \equiv 1 \bmod p$. Hence there also exist $(p-1) / 2$ positive integers $j \leqslant p-1$ satisfying $j^{(p-1) / 2} \equiv-1 \bmod p$. Let λ be one of these positive integers j and define the positive integers $a=2$,

$$
\theta=\lambda \prod_{j=1}^{m} q_{j}^{2}, \quad b=4 \theta-1
$$

It follows that

$$
\begin{equation*}
a^{2}+4 b=16 \theta, \quad \frac{a \pm \sqrt{a^{2}+4 b}}{2}=1+2 \sqrt{\theta} . \tag{5}
\end{equation*}
$$

Using these values of a and b in (1) and using (2) from Lemma 3 with q replaced by p, we see that

$$
\begin{equation*}
F_{p} \equiv\left(a^{2}+4 b\right)^{\frac{p-1}{2}} \equiv(16 \theta)^{\frac{p-1}{2}} \equiv 4^{p-1}\left(\Pi q_{j}\right)^{p-1} \lambda^{\frac{p-1}{2}} \equiv-1(\bmod p) . \tag{6}
\end{equation*}
$$

Also from (1) and (5) we see that

$$
\begin{equation*}
F_{p}=\frac{(1+2 \sqrt{\theta})^{p}-(1-2 \sqrt{\theta})^{p}}{4 \sqrt{\theta}}, \quad F_{p} \equiv p(\bmod 4 \theta), \tag{7}
\end{equation*}
$$

where the second result here is obtained by expanding the first result and taking every thing modulo 4θ.
Now let q be a prime factor of F_{p}. From (6) we see that $q \neq p$, and from the second part of (7) we see that q is not a divisor of 4θ, so q is different from the primes $2, q_{1}, q_{2}, \cdots, q_{m}$.
We note that

$$
\left(a^{2}+4 b\right)^{\frac{q-1}{2}} \equiv(16 \theta)^{\frac{q-1}{2}} \equiv 4^{q-1}\left(\Pi q_{j}\right)^{q-1} \lambda^{\frac{q-1}{2}} \equiv \lambda^{\frac{q-1}{2}} \equiv \epsilon \bmod q
$$

where $\epsilon=+1$ or $\epsilon=-1$.
If $\epsilon=+1$ we use (4) from Lemma 3 to conclude that q is a divisor of $2 b F_{q-1}$. But q is odd and by Lemma 2 is not a divisor of b, since ($\left.F_{p}, b\right)=1$ and q is a divisor of F_{p}, and so q is a divisor of F_{q-1}. By Lemma 1, with n replaced by $q-1, h$ replaced by p, and r by q, we see that p is a divisor of $q-1$ and so $q \equiv 1 \bmod p$. Now if this congruence holds for every prime divisor q of F_{p} it would follow from the multiplication of such congruences that $F_{p} \equiv 1 \bmod p$, contrary to (6). Hence we must have $\epsilon=-1$ for at least one prime divisor q of F_{p}.
In the case $\epsilon=-1$ we use (3) from Lemma 3 to conclude that q is a divisor of $2 F_{q+1}$, and so a divisor of F_{q+1}. By Lemma 1 we see that p is a divisor of $q+1$, so $q \equiv-1(\bmod p)$, contrary to the assumption that $q_{1}, q_{2}, \cdots, q_{m}$ are the only primes satisfying this congruence. O.E.D.

Corollary. From the same analysis used to establish the above result, with $a=2$ and $b=4 \lambda-1$ substituted into (1), $p \cdot 1$, for any prime p

$$
F_{p}=\frac{(1+2 \sqrt{\lambda})^{p}-(1-2 \sqrt{\lambda})^{p}}{4 \sqrt{\bar{\lambda}}}
$$

is divisible by a prime $q \equiv-1 \operatorname{lnod} p)$. Since $\lambda \leqslant p-1$, a prime

$$
q \equiv-1(\bmod p)<(2 \sqrt{p-1}+1)^{p}
$$

For a proof of the existence of infinitely many primes $q \equiv-1(\bmod m)$, $(m$ any positive integer $\geqslant 2)$ using polynomial theory, see Nagell [4]. For a simple proof of the existence of infinitely many primes $q \equiv 1(\bmod m)$ see Ivan Niven and Barry Powell [5].

ADDITIONAL RESULTS

Theorem: Consider any odd prime p which dioes not divide $\left(a^{2}+4 b\right)$, where $(a, b)=1$ as in (1), $p \cdot 1$. Then $F_{p} \equiv 0 \bmod q, q$ prime, $\rightarrow q \in 1 \bmod p$ or $q \equiv-1 \bmod p$ if and only if

$$
\left(a^{2}+4 b\right)^{\frac{q-1}{2}} \equiv 1 \bmod q \quad \text { or } \quad\left(a^{2}+4 b\right)^{\frac{q-1}{2}} \equiv-1 \bmod q
$$

[Co-discovered by Professor Verner E. Hoggatt, Jr., per telephone communication.]
Proof. We have, from (1), p. 1,

$$
F_{p}=\frac{\left(\frac{a+\sqrt{a^{2}+4 b}}{2}\right)^{p}-\left(\frac{a-\sqrt{a^{2}+4 b}}{2}\right)^{p}}{\sqrt{a^{2}+4 b}}
$$

Multiplying both sides by 2^{p-1} and using the binomial expansion, we get

$$
\begin{align*}
& 2^{p-1} F_{p} \equiv p a^{p-1} \bmod \left(a^{2}+4 b\right) . \tag{8}\\
& F_{p} \equiv 0 \bmod q \rightarrow q \nmid\left(a^{2}+4 b\right) .
\end{align*}
$$

Otherwise

$$
\begin{aligned}
q \mid\left(a^{2}+4 b\right) & \rightarrow 2^{p-1} F_{p} \equiv p a^{p-1} \bmod q \text { from (8), } \\
& \rightarrow p a^{p-1} \equiv 0 \bmod q \rightarrow q \mid p \text { or } q \mid a . \\
q \mid p \rightarrow q= & p \rightarrow F_{p} \equiv 0 \bmod p \rightarrow p \mid\left(a^{2}+4 b\right)
\end{aligned}
$$

by (2) of Lemma 3, contradicting the assumption that $p \nmid\left(a^{2}+4 b\right) . q \nmid a$, since

$$
a=F_{2} \equiv 0 \bmod q \rightarrow 2 \mid p
$$

by Lemma 1 , and p is odd.
Thus from Lemma 3, (3) and (4),

$$
\begin{aligned}
& \text { and (4), } \\
& F_{q+1} \equiv 0 \bmod q \text { iff }\left(a^{2}+4 b\right)^{\frac{q-1}{2}} \equiv-1 \bmod q
\end{aligned}
$$

and

$$
2 b F_{q-1} \equiv 0 \bmod q \text { iff }\left(a^{2}+4 b\right) \equiv 1 \bmod q .
$$

$F_{p} \equiv 0 \bmod q$ and $F_{q+1} \equiv 0 \bmod q \rightarrow q \equiv-1 \bmod p$ by Lemma 1 with h replaced by p. Since

$$
p\left|(q+1) \rightarrow F_{p}\right| F_{q+1}
$$

$p\left|(q+1) \rightarrow F_{p}\right| F_{q+1}$
Therefore $F_{q+1} \equiv 0 \bmod q$. Thus $F_{q+1} \equiv 0 \bmod q$ iff $q \equiv-1 \bmod p$. Hence $\left(a^{2}+4 b\right)^{\frac{q-1}{2}} \equiv-1 \bmod q$ iff $q \equiv-1$

$$
\frac{q-1}{2}
$$ $\bmod q$.

Similarly $F_{q-1} \equiv 1 \bmod q$ iff $q \equiv 1 \bmod p$ and hence $\left(a^{2}+4 b\right)^{\frac{q-1}{2}} \equiv 1 \bmod q$ iff $q \equiv 1 \bmod p$ follows from Lemma 1, Lemma 2, and the fact that $p\left|(q-1) \rightarrow F_{p}\right| F_{q-1}$.
Conjecture. For n any positive integer sufficiently large, there exists at least 1 prime $q \equiv \pm 1 \bmod n$ dividing F_{n}.
EXAMPLES. F_{15} of the Fibonacci sequence

$$
\begin{gathered}
=610=61 \cdot 10 \text { and } 61 \equiv 1 \bmod 15 . \\
F_{18}=136 \cdot 19 \text { and } 19 \equiv 1 \bmod 18 . \\
F_{20}=165 \cdot 41 \text { and } 41 \equiv 1 \bmod 20 . \\
\text { REFERENCES }
\end{gathered}
$$

1. Niven and Zuckerman, An Introduction to the Theory of Numbers, 3rd ed. (1972), pp. 96-99.
2. V. E. Hoggatt, Jr., and Calvin T. Long, "Generalized Fibonacci Polynomials," The Fibonacci Quarterly, Vol. 12, No. 2 (April 1974).
3. Niven and Zuckerman, An Introduction to the Theory of Numbers, 3rd ed. (1972), Ch. 2, The orem 2.27.
4. T. Nagell, An Introduction to Number Theory, pp. 170-173, John Wiley, New York (1951).
5. Ivan Niven and Barry Powell, "Primes in Certain Arithmetic Progressions," Amer. Math. Mon thly, Vol. 83, No. 6, June-July 1976, pp. 467-469.
