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INTRODUCTION 

In Section 1, we Introduce a matrix sequence each of whose terms is (] ;?), denoted by L, or (J. I ] , denot-
ed by R. We call such sequences Z./?-sequences. A one-to-one correspondence is established between the set of 
Z./?-sequencesandthe continued fraction expansions of numbers in the unit interval. In Section 2, a partial order-
ing of the numbers in the unit interval is given in terms of the Z./?-sequences and the resulting partially ordered set 
is a tree, called the Q-tree. A continued fraction expansion of a number is interpreted geometrically as an infinite 
patii in the /7-tree and conversely. In Section 3, we consider a special function, g, defined on the Q-tree. We show 
that# is continuous and strictly increasing, but that g is not absolutely continuous. The proof that ^ is not abso-
lutely continuous is a measure theoretic argument that utilizes Khinchin's constant and the Fibonacci sequence, 

1. THEZ./7-SEQUENCE 

We denote the matrix ( ] ° ) by L and the matrix ( J ] ) by /?. 

Definition. An Z./?-sequence is a sequence of 2 x 2 matrices, M-\, M2, —, M-,, ••• such that for each • /, 
Mj= L or M,- = R. 

We shall represent points in the plane by column vectors with two components. The set C = {(V) | both a and 
j3 are non-negative and at least one of a and /3 is positive} will be called the positive cone. Our preseat objective 
is to associate with each vector in the positive cone an /.^-sequence. 

Definition. A vector (jy) e £ is said to accept the Z./?-sequence Mf, M2, •••, M,, - - i f and only if there is 
a sequence 

(?X,).-; (S) 
whose terms are vectors in C, such that 

(£ ) -Q 
and for each i> 7, ( ! ' . " ' ) = / w / ( s ' ) ' 

l f Q ) e C a n d a < , 3 , t h e n ( « ) - - ( ^ a ) and ( ^ ) e C. 

If 0 < a , then 

By induction it can be shown that every vector in C accepts at least one Z./?-sequence. If a is a positive irrational 
number, then ( a ) accepts exactly one Z./?-sequence; if a is a positive rational number, then Q accepts two 
Z./?-sequences. | 

The expression Ra°L3lRa2 - will be used to designate the Z./?-sequence which consists of a0 /?'s, followed 
by 3j Z.'s, followed by a2 R'%, etc. 

We shall follow Khinchin's notation for continued fractions and express the continued fraction expansion of 
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a, a - a0 + as a = [ao;ai,a2, •••/. 
aj+ -1* ... 

32 

The remainder after n elements in the expansion of a is denoted by rn = [an; an+i, an+2, —J. All the well 
known terms and results of continued fractions used in this paper may be found in [1 ] . 

Theorem 1. Leta = fao;ai,a2,-] and let (") accept the Z./?-sequence Rb°LblRb2 - . Then b\ = a; 
for all / > 0 and for 

n Ik 
kn ••= J2 bj. jr-1 = rn+1(a) 

i=0 kn 
if n is odd and 

?*/, _ 7 
5 ^ rn+1(a) 

if/7 is even. 

Proof. Since ( " ) accepts Rb°Lbl Rb2 - , there exists a sequence ( | ° ) , ( - * ) , (Z 2 ) , - , whose terms 
O j 1 

are vectors in £, such t h a t Q ° \ = [V\ and such that if n is even and kn < k < /r,,-/-/, then 

and if /7 is odd, then 

{«) = Rb0LblRb2-Lb"Rk-kn {fk) . 

Since 
rn = [an:rn+1], rn+1 = -— 1 — and an = [rn] . 

rn an 
Therefore an is the least integer/such that r n - j < \ . 

We now use induction on/?. For/? = 0, rp = a. Sinceao is the least integer/such that 

a-/<l ( ? ) = * - ( £ ) . 
where 7 a = a - a 0 a n d 5 a =1.Thus 

^o - a0 and = — - - . 
5/r0 / rx 

We assume the result for 0 < t < n and then consider two cases. 
CASE 1. Let/? be odd. Then 

^kn-bn = lkn.1 = J_ < 1 

bkn-bn
 8kn.f rn 

and since an is the least integer /such that/^ - / < 7, 

( ^ f i - ^ v ,annkn\ 
KK~bn I = L \*kn)-

 w h e r e T ^ = 7 ^ - ^ and 8kn = bkn„bn - an7kn-bn • 

Thus 

h - a and T/C/? - lkn~bn _ 1 

on - an and ~ ^ rn+i . 
bkn

 bkn-bn-anJkn-bn
 rn-an 

CASE 2. Let/7 be even. Then 
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&k -b Sk i ^ 
Kn "n Kn-1 

and since an is the least integer/ such that rn - j < 1, 

U ^ " ) = Ran(sk
n)' w h e r e 1*n = 7k„-bn-°n&kn-bn and 8kn - Sk „ 

Thus 
b =a and ?HlL- V<n-bn-*n&kn-bn _ _ j 
un an anu ^ r — a _ m 

hkn hn-bn rn+1 

The preceding theorem can be extended to hold for rational a by modifying the notation as follows: 
(i) If an

 = 1, express [Q;ai, a2, —, an] as either 

[0;ai,a2,—,an>
6D] o r [0;a?, a2, - , an.j + 1, °°] or 

(ii) If an £ 7, express [0;a•/, a2, —, an] as either 
[0;ai,a2,-,an-1,°°] or [0;a1f a2, - , an,°°] . 

When we permit the use of these expressions we shall speak of continued fractions in the wider sense. One sees 
that the method of LR-sequences provides a common form for the continued fraction expansions for both ra-
tional and irrational numbers. (The non-uniqueness, however, of the expansion of a rational number still 
persists.) 

Definition. Let a = [aorai, 82, •••/. The k order convergent of ais 

Pkfa) r 7 
7 7 j = Lao;ai,a2,-,ak] , 

where 
p-l(a) = 7, p0(a) = 0, q-i(a) = 0, q0(a) = 1, 

and for A: > 7, 
Pk(a) = akPk-i(a)+Pk-2(a) a n d Qk(a>) = a^Qk-l^i + Qk-2(a) • 

When no confusion will result, we shall omit the reference to a and write Pk, q^ forPk(a), qk(a)-

An important proposition in the theory of continued fractions is: If 
„ - r n r 7 t h n n n -Pn+1 _ rn + lPn+Pn~1 
a = [a0;a1f a2, - , an, rn+1], then a - T~7TT~n— ' 

Qn+1 rn + lQn+Qn-1 

We give an analogue of this result in the following theorem and its corrolary. 

Theorem 2. I f a = [0; a1f a2,-1, (^) accepts the LR-sequence/^;, /W2, - , and 
n 

kn = 2T ai> 
i=1 

then 

kn \iPn'1 Pnn) >f n is even 

n /̂ -
/= / /AV, Pn-1\ i f / 7 i s o d d > 

^ <7/7 9 / 7 - / / 

Proof. We use induction on n. For/? = 7, 

n ^ - ^ - C , ?)-($: £) 
We assume the result for 1 <t<n and then consider two cases. 
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CASE 1. Let A be even. 
kn I kn-1 

n Mi=( n MI 

CASE 2. Letn be odd. 

^n / kn- 1 

^n 
(Pn-1 Pn-2 

R =\qn-1 Qn-2 
\ f 1 an\ (Pn-1 anPn-1+Pn-2\ , 
)\0 1 ) = \qn-1 anqn-1 +qn-2 / = 

Pn-1 Pn\ 
Qn- 1 Qn ' 

kn 

1=1 

I *n-1 \ 

(n * , 
an I Pn-2 Pn-1 

\ qn-2 Qn-1 \an 

1 °)= ( Pn~2 + 

an 1 * \ qn-2 + 
Pn-2 + anPn-1 Pn-1 

Corollary. If a =[0;ai, a2, •••/, ( " ] 
n 

kn = L ai> then ( 

The well known result, 

Qn-2+anQn-1 Qn 

accepts the LR-sequence Mj, M2, — , and 

lkn 

i-1 \ / Pn Pn-1 \ 
-1 ) WA7 Qn-1 1 

/Pn Pn-1 
WA? Qn ; > < £ > • where 7kn rn+i(a)-

Pn-lQn-PnQn-1 = (-V , 

is an immediate consequence of the above theorem and the fact that det (L) = det (R) = 1. 

2. THE Q-TREE 

Although (°;) accepts two LR-sequences when a is rational, these two sequences coincide up through a cer-

tain initial segment. 
Definition. Let a be a positive rational number and let ( " ) accept the LR-sequence M7, M2, •••• We call 

the initial segment/^ 7, M2, —, Mn a head of a if and only if 

{a
1)=M1.M2.-,Mn{1

1). 

If a is a positive rational number, the head of a exists and is unique. Thus if M1, M2, —, Mn is the head of a, 

then the two LR-sequences accepted by (^)are M1f M2, ~*,Mn, R,L,L,L, - a n d M / , M2,-,Mn, l,R,R,R, - . 

Definition. Let a-j and 0,2 be rational numbers in (0,1]. We say that a ; is ̂ -related to 0,2 if and only if 
the head of 0,7 is an initial segment of the head of a.2. 

The Q relation is a partial ordering of the rational numbers in (0,1], and the resulting partially ordered set is a 
tree, 

Definition. The set of rational numbers in (0,1] partially ordered by Q is called the tf-tree. 
We may now interpret the continued fraction expansion of a number (in the wider sense) geometrically as an 

infinite path in the £?-tree. Conversely, any infinite path in the Q-tree determines an LR-sequence and thus the 
continued fraction expansion (in the wider sense) for some number. 

The following diagram is an indication of the graphical picture of the Q-tree. 

1/2 L 1/1 

3/4 

L 

5/7 

R 

4/5 
(etc.) 

Figure 1 
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3. THE FUNCTION $r 

Definition. Let a e [0,1] and let (?\ accept the LR-sequenceM/, M2, - . We then define # on the unit 
interval by 

9(o-) = 2 E CJ2~J> where cj = 1 ^ 'jf M> " L
R . 

M I J 

It is clear that g is a one-to-one function. 

Theorem 3. For 0 < a < 1, g is a strictly increasing function. 

Proof. L e t 0 < a < / 3 < 1 , a = [0;a-\,a2, •••/, 0 = [0; b 1t b2, - 7 and let f be the least integer n such that 
an^ bn. Thuspk(a) =Pk((l) md qk(a) = qk(P) for 0 < k < t 

Now 
a < Q iff rtWPt-l +Pt-2 _ rtfajpt-j+pt^ > Q 

if and only if 

if and only if 

rt@tq t-t+q t.2 rt(a)q t-j+q t-2 

rt(a)(pt-2qt-l-Pt-lQt-2) + ft(^(Pt-lQt-2-Pt-2Qt-l) > 0 

it-1 (rt(a)-rtm(-ir' > 0. 

Therefore, rt(a) > rt(fi) if and only if t is odd. Since 

rt(a) = [at;rt+i(a>] and rt((i) = [bt;rt+i(§)]', at > bt 

if and only if t is odd. We consider two cases determined by the parity of t 
CASE 1. Let t be odd. In this case at > bt. If 

(Pt-i(a) v ^ 2 

If 

r = Z a,. then gfaJ < g(!±l™) +-^-

Z > , then M ) > g ^ t M ) + 
Pt-l(W\^2_ 

2s 

Since g is a one-to-one function, s <r and 

(pt-l(a)\ _ fptu.j(P) 
9 ^ - n ) = W ^ f ) impliesthat g(a)-g(P) < - ? - - A < 0 

with equality holding if and only if a=]3. Thus g(a) <g((3L 
CASE 2. Let t be even. In this case at < bt and so s > r. Now 

/ i at 

\qt-i(a)' 2
r'at i?i 2' 2r 1 xQt-l($> 2

s'bt M 2' 

Since /•— af = s - 6 f , 

g(a) - gffi) = 
2r-at 

r at t>t 
* —*— < o 

r+1 

with equality holding if and only if a = /3. Thus gfa) <g((3). 

Corollary. For a e [0,1] ,#Ya>/ exists and is finite almost everywhere. 

Theorem 4. For 0 < a < 1, # is a continuous function. 

Proof. Le tae [0,1], a= [0,-37, 52, — 1. For any e> 0, choose an/? such that 
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n2n 
< e. 

Since the even ordered convergents form an increasing sequence converging to a and the odd ordered conver-
gents form a decreasing sequence converging to a, (see [1 ] , p. 6 and p. 9), 

P^L<a<PJn±lm Let 5 
Q2n Q2n+1 

a - ^ n ± l \ , since 
Q2n + 1 I 

P2n+1_ 
Q2n+1 

P2n_ 

Q2n 

If /3e[0,1] and I a - jS l < 5, then either ^ <a<$< P-2-n-^ 0 r P-2-^ < 6 < a < ^ - - ; 

Q2n Q2n+1 q2n Q2n+1 

Since g is an increasing function, 

\g(a)-g(P)\ < ,(P*!±l\-g(ein) 
\Q2n+ll \Q2n' 

2-2 

2n + 1 

- 2 a/ 
i=1 2 

nn+1 
< €. 

In the next theorem, we make use of the Fibonacci sequence <fn>, where fg= 1, fj = 1, and fn = fn.j + fn-2. 

Theorem 5. The derivative of g at u = (-1 + >j5)/2\s infinite. 

Proof. The continued fraction expansion oft/ is [0 ;3 ; , a2/ •" I > where a,- = 1 for all / > 1. Therefore, 

Pn=Pn~1+Pn-2 and Qn = Qn-1 + Qn-2-

Since/?_/= lpo = 0, q-1 = 0/qo = 1,pn = fn ^dgn = fn+jm 

P2n<x<P2nf2<U/ 

Q2n Q2n+2 
then 

Mm 
>u~ u - x 

> lim 
g(u)-g[ -„lpJn+2\ 

Q2n+2 * 

P2n 

Q2n 

= urn 
A7 - > • o 

n+1 

£ 2* k 2* 
u -

f2n 
f2n + 1 

which can be shown equal to (see [2 ] , p. 15) 

hnr 
i=n+2 2 

2i 

~2n „2n 

Since 
I- u-2n

+u
2n+2\ 

= ,im _Jti±u^L ( 
& ) ' • 

Similarly, 

_J_ = Z ± £ £ > / lim gfuLziM. = oo 
4 ( / 4 tf > x^u- u - x 

| i m QiuLzjM = „ 

We omit the details 

Definition. The numbers a = [ag; a-j. a2, —J and ]3= [bo;bi, b2f —7 are said to be equivalent provided 
there exists an N such that an = bn for n > N. 

Corollary 1. \ia= [ao;ai, a2f —7 is equivalent to u, then g'(a)= °°. 

Proof. Since a is equivalent to £/, there exists an N such thata^ = 1 for/7 > /!/. If 

P2n <x<P2n±2_<a<P2n+1 

Q2n Q2n+2 Q2n + 1 

where 2n > N, then 
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g(a)-g(Pjn±2) 

Vm-trM-flM > | j m \j2n+2L = | i m y -^-(q2nq2n + 1). 
P2n+1 P2n n -+ °° :Z^+2 2

2i 
i= 

Q2n+1 Q2n 
Since an = 1 for n > N, 

J5 
Thus 
Mm 

n _» a 

Since 

ff(a) -
a -

1/4u4 

Similarly 

- * 
> Mm 

A7 _ » oo 

= (7+3V51/8 

2 
Z5-4" 
> 1, 

(u2n_u-2n)(u2n + 1+u~2n-1)= | j m 1 (u8n + 1+u4n-1 _„-1 rfjf. 
n->°*15 \4u4) 

lim _ ^ - - £ ^ = ooa 

*-*<* a - x 

| i m + J Z M i z J Z ^ « . 

Corollary 2. In every subinterval of [0,1] there exists a 7such that^YT^ = °°. 

Proof. Let 
fa, 07 c (0,1], a = [0;ah a2, - 7 and 0 - [0;bh b2f - 7 -

We may assume that |3 is not equivalent to u for if it is, there is nothing to prove. 
Let t be the least integers such that an ^ bn. Choosing/? such that2n > t and b2n+2 > h w e define 

x = [0;bh b2, - , b2n, °°7, 7 = fO/bj, b2, - , b2n+l, I I h - 7 , and y = [0;b1f b2, - , b2n+2,°°]. 

Then a<x < y <y < j3and 7is equivalent to u. Thus the derivative of g at 7is infinite. 
The measure used in this next theorem is Lebesgue measure. The measure of a set A is denoted by m(A). 

Theorem 6. For almost all a~ [0;aj, a2, - 7 e (0, 77, g'(a) = 0. 

Proof. Let 
n Un 

A = { a e fft/7." Mm ( O a M = Khinchin's constant} , 

B = [a ^ (0,1]: g'(a) exists and is f in i te}, and 

C = { a e f#, 77: ^ > /7 log/7 for infinitely many values of n). 
Since (see [1 ] , pp. 93,94), 

ml A) = m(B) = m(C) = 1, 
m(A n B n C) = I 

Let 
a <= A n £ n C 

and let { * „ } be any sequence converging to a. We define a second sequence [yn] in terms of the partial quo-
tients, pm/qm, of a Let 

Yn =\ : m i s t n e greatest integer such that (i) I a-xn\ < \a - — and 
1 <7m I < 7 m ' 

(ii) (a-xn) and ( a - — | have the same sign} 
\ Qm I J 

We note that/?? is an unbounded, non-decreasing function of/? and thus/?? goes to infinity as n does and con-
versely. Since g is a strictly increasing function and noting that 



130 A MATRSX SEQUENCE ASSOCIATED WITH A 
CONTINUED FRACTION EXPANSION OF A NUMBER 

[APR. 1977] 

Pm+2 

Qm+2 

Pm+2\ 

has the same sign as 

we have 

< I a-xn\ and that [a . 
\ Qm+21 

la- em) , 

g(a)-g(xn) 

a-xn 

g(a)-g(P-^\ I [qm+2(qm+2 + Qm+31 [See [1], p. 20.] 
\Qml I 

«*"-'(£)l**« 
< (2.2-«m)2q2

m+3, where km = £ a; . 

i=1 
Since Khinchin's constant is < 3, 

Qm = amqm-i+qm-2 < 2m \ \ ai 

and a e A, we have that 

n2 
Vm+3 < 

m+3 

(2m+3n *) 
x i=i ' 

i=1 

22m+6n2m+6 

forsufficiently large values of m. Nowa^C implies that km > m log /77 for infinitely many values of m and thus 
g(a)-gfxn) 

a~xn 

< 28-36 

\ 9\ogm I 

for infinitely many values of m and n. As n goes to infinity, m goes to infinity and hence given any positive e, 
the inequality 

' g(a)-g(xn)\ < e 

will be satisfied for infinitely many values of n. Since a e 5 , g'(a) exists and therefore g'(a)= 0. 

Corollary. The function g is not absolutely continuous. 

Proof. Sinceg is not a constant function and for almost all a^(0,7] g'(a) = 0, it follows from a well known 
theorem that# is not absolutely continuous. (See [3 ] , p. 90.) 
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