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INTROBDUCTION
In Section 1, we introduce a matrix sequence each of whose terms is 1o ,denoted by £, or 1 , denot-
11 01

ed by A We call such sequences LA-sequences. A one-to-one correspondence is established between the set of
L R-sequences and the continued fraction expansions of numbers in the unit interval. In Section 2, a partial order-
ing of the numbers in the unit interval is given in terms of the L A-sequences and the resulting partially ordered set
is a tree, called the O-tree. A continued fraction expansion of a number is interpreted geometrically as an infinite
path in the ()-tree and conversely. In Section 3, we consider a special function, g defined on the @-tree. We show
that g is continuous and strictly increasing, but that g is not absolutely continuous. The proof that g is not abso-
lutely continuous is a measure theoretic argument that utilizes Khinchin's constant and the Fibonacci sequence.

1. THE LR-SEQUENCE

We denote the matrix (} ?) by £ and the matrix ((1) }) by R.

Definition. An LR-sequence is a sequence of 2 x 2 matrices, My, Mg, -, M;, - such that for each /,
Mi=LorM; =R

We shall represent points in the plane by column vectors with two components. The set £ = {(2‘)! both aand
B are non-negative and at least one of @ and (3 is positive } will be called the positive cone. Qur present ohjective
is to associate with each vector in the positive cone an L A-sequence.

Definition. A vector (%) < C issaid to accept the L A-sequence My, Mo, -, M;, - if and only if there is

a sequence
Golls,) o (5,)

whose terms are vectors in £, such that
( 70) N (a)
So/  \B

and foreachi> 17, <?5/I/:11> = M; G;I/) .

If(g‘)ec‘anda<6,then(§):(6f(x) and (ﬁ_o‘a) e L.

If 8<a, then 5
ay = a-p and (C-PYe
(5)=2("g") (“s") S

By induction it can be shown that every vector in £ accepts at least one L A-sequence. | a is a positive irrational
number, then (07‘) accepts exactly one L R-sequence; if ais a positive rational number, then (‘;‘) accepts two
[ R-sequences. . . | ,

The expression R 131 R%2 . will be used to designate the £ A-sequence which consists of a, A’s, followed
by a, L's, followed by a, A's, efc. . _ '

We shall follow Khinchin's notation for continued fractions and express the continued fraction expansion of
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124 AMATRIX SEQUENCE ASSOCIATED WITH A [APR.

- 7
a, a=aggt ——— as a = [agray, az /.

ar+ Ly ..
az
The remainder after n elements in the expansion of a is denoted by r, = [a,; an+7. an+2, - /. All the well
known terms and results of continued fractions used in this paper may be found in [1].

Theorem 1. Leta= [ag; ay, as, -] and let (‘;‘) accept the L A-sequence A1 D1 P2 ... Then b, = 4
forall /> 0 and for

n
Yk
kn = z b;, S—L = rpela)l
-0 kp
if nis odd and
Ykn _ 1 _
6k, rn+1fa)
if n is even.
S by, by pb, . : 0% v 72\ ..
Proof. Since (1) accepts R0 %1 R , there exists a sequence (52)(6‘1) <621) , -, whose terms
are vectors in C, such that(gO) = (‘;‘) and such that if n is even and k, < k < kp+7, then
0
ay - pbo,b1,b2  pbn, k-k, (7K
(1) ROLTIR™Z..R"L "(5k)
and if n is odd, then
«\ _ pbo,b1,b2 bp k-kpn (Yk
(2) = BPOLPTRP2 . Prpt ke (5E)
Since ,
rn = lap; rpt1], rthe1 = —— and  ap = [rn].
'n—ap

Therefore a, is the least integer j such thatr, —j < 1.
We now use induction onn. Forn =0, rp = a. Since ag is the least integer j such that

a-j <1, (“‘7)=Ha°<gao> ,

do

where v, =a—a, and 8, =1. Thus

We assume the result for 0 <t < and then consider two cases.
CASE 1. Letn be odd. Then

Ykp-bp _ Ykp-1 _ 1
Skp-bp Okp_g n

and since a,, is the least integer jsuch thatr, —/j< 1,

’Ykn‘bn an 7kn
(6kn-bn) (5kn)’ where Yk, = Yk,-p, and Ok, = 8 kp-bp — @nYkp-by, -

Thus

Ykn Ykn-bp 7
PR T = T
kn kn-bp ~ @nYkn-bp n—dn

b, = a, and

CASE 2. Letn be even. Then
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Ykp-bp, _ Ykp-1
(Skn'bn 8kn—1

'n

and since a, is the least integer j such thatr,, — j < 7,

(7k,,—b,, ) - pan (Ykn)

5kn—b,7 5/(,7 ,  where 7kl7 = ’)/kn_bn —anﬁkn_bn and 5kn = 5kn’bn'

Thus
Ykn  Ykp-bp ~ nOk,-by

b,—, = dp and rn—dan

Ok, Sk by, I'n+1
The preceding theorem can be extended to hold for rational a by modifying the notation as foll ows:
(i) Ifa, =1 express /0 ay, ag, -, ap/ as either
[0:a7,a0, -+, a8, <] or [0ayap -, ap-7+1 <] or
(i) fa, #1, express [0 ay, ap, -, a,] as either
[0:a7, 8, -, ap—1,°] or [0:ay, a2, -, a,, =] .

When we permit the use of these expressions we shall speak of continued fractions jn the wider sense. One sess
that the method of LR-sequences provides a common form for the continued fraction expansions for both ra-
tional and irrational numbers. (The non-unigueness, however, of the expansion of a rational number still
persists.)

Definition. Leta = [ag;ay, az, -J. The k" order convergent of ais

Z—Z% = [ag;ay, a2, -, k],
where
p-1fa) = 1, pola) = 0, g-g(a) = 0, gpla) =1,
and fork > 1,
prla) = agpk-1(a) +pg-2(a) and  gela) = agqe-1lal +q-2(al.

When no confusion will result, we shall omit the reference to a and write py, gx forpelal, gifa).

An important proposition in the theory of continued fractionsis: |If
Pn+1 _ I'n+1Pn 7 Pn-1
Gn+1  Tn+1qn*qn-1
We give an analogue of this result in the following theorem and its corrolary.

a = lag;ay, as, ~, an, rn+7/, then a =

Theorem 2. \fa=[0;ay;, a2, ], (“

7) accepts the LR-sequence My, My, -, and

n
kp = Z aj,
=1

then
kn (p”"7 g”) if n is even
M; = dn-1 n
=1 Pn Pn-1 H H
(qn In1 ) if n is odd.

Proof. We use induction on n. Forn =1,
k,
_ (1 0y _
M= et = (5 950 %)

We assume the result for 1 < ¢ < n and then consider two cases.
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CASE 1. Letn be even.
kn kn-1 Pn-1 Pn-2\ (1 an Pn-1 a@nPn-1*Pn-2 P
8 - n-1 Pn
n M =< n Mf) R = (q,,-; qn_z) (0 1 ) =<‘7n—7 anqn-1*Qqn-2 > =(qn-7 q,,).
i=1 i=1
CASE 2. Letn be odd.

kn kp-1
W= I )evn - (02 200 G, 0= Gz G- 2r)

Corollary. \f a =[0;a7, a2, ], ( 07‘ ) accepts the LR-sequence M7, M, -, and

- ay _ (Pn Pn=1y (Tkn h Ykn _ )
kn =Z aj, then (7)_(% <7n—1)(8k,,>' where Sk—n—r,,“(a.
=1

The well known result,
n
Pn-19n = PnGn-1 = (=1)7,
is an immediate consequence of the above theorem and the fact that det (L) = det (R) = 1.
2. THE Q-TREE

Although (‘;‘) accepts two LR-sequences when a is rational, these two sequences coincide up through a cer-
tain initial segment.

Definition. Let a be a positive rational number and let (07‘) accept the LR-sequence M7, Mo, --. We call
the initial segment #77, Mo, ---, M,, a head of aif and only if

(%)= My, Mz, =, My (]) -

If a is a positive rational number, the head of a exists and is unique. Thusif M4, Mo, -, M, is the head of q,
then the two LR-sequences accepted by (g) areMyq, Moy, -, My, R L L L, —andMy, My, -, My, LR AR, --.

Definition. Let a; and ay be rational numbers in (0,1]. We say that a; is Q-related to a2 if and only if
the head of a; is an initial segment of the head of a5.

The Q relation is a partial ordering of the rational numbers in (0,1], and the resulting partially ordered set is a
tree.

Definition. The set of rational numbers in (0,1] partially ordered by @ is called the Q-tree.

We may now interpret the continued fraction expansion of a number (in the wider sense) geometrically as an
infinite path in the O-tree. Conversely, any infinite path in the Q-tree determines an LR-sequence and thus the
continued fraction expansion (in the wider sense) for some number.

The following diagram is an indication of the graphical picture of the Q-tree.

12 L 11
R
7
L I
3/5 ~
1/
L\ R t R L /\ R
7 27 3/8 3/7 4/7 5/8 5/7 /5
(etc.)

Figure 1
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3. THE FUNCTION ¢

Definition. Let a < [0,1] and let (;X) accept the LR-sequence M4, Mo, --. We then define g on the unit
interval by

I
ml\

i 0 if Mj =

= 9] R R

gla) = 2 3 ¢;27, where ¢ {7 if 1)
/=1

It is clear that g is a one-to-one function.

Theorem 3. For 0 <a<1,gisastrictly increasing function.

Proof.Let0 <a<f<1,a=/[0ays, a1, 8=10by, by, -] and let ¢ be the least integer » such that
an # bp. Thus pela) = pr(R) and gela) = g (B) for0< k<t

Now
a< B iff relBloe-1 +pe-2 _ refalpe-1+pe2 S0
relB)ge-1+ g2 relalge-1+qe2
if and only if
rla)(pe-2Ge-1—Pe-190-2) + 1B =19 -2 — P-29¢-1) > 0
if and only if '

(refa) = reB-1)7" > 0
Therefore, re(a) > r(B)if and only if ¢ is odd. Since
rt(a} = [at,'rt+7(a}] and /'t(B} = [bt,'fﬂ](B)], ar > bt

if and only if tis odd. We consider two cases determined by the parity of ¢
CASE 1. Lett be odd. In this case a; > by. If

t
=3 4 pe-1la) y, 2
r Z:] a, then gla) < g('qt_ﬂa) ) +2r_7

t
- . pe1fB)y , 2
s E1 b;, then g(B) > g(qt-I(B) ) +;s_ .

Since g is a one-to-one function, s < r and

perlaly _ o pegB)y 2 2
<qt_7(a)) = g(qt-ﬂﬁ/) implies that  g(a) — g(B) <?__7_ - <0

with equality holding if and only if a= . Thus gla) < g(3).
GASE 2. Let ¢ be even. In this case a; < by and sos >r. Now

byt
perldy 2 s 1, etlll) 25 4
y(a} < (qt—l(a}) Zr_at paet 2,‘ + 2r+7 and g(ﬁ} = g<qt—7(ﬁ} )+ Zs_bt E 2,~ .

Sincer—az=s—by,

at bt y s
) = —2 o 12 2, 2
gla) — g(B) Jra l:; 2/ /=Z1 2,‘ J+ 2r+7 Z * 2r+7 <0

with equality holding if and only if a= 8. Thus gfa) < g(B).
Corollary. Forac (0,11, g"a) exists and is finite almost everywhere.
Theorem 4. For0<a<1,gisacontinuous function.
Proof. Letac(0,1],a=10;ay, a2, - 1. Forany €> 0, choose an n such that



128 A MATRIXSEQUENCE ASSOCIATED WITH A [APR.

—21— < €.

2 n
Since the even ordered convergents form an increasing sequence converging to a and the odd ordered conver-
gents form a decreasing sequence converging to a, (see [1], p. 6 and p, 9),

| |
Pon o P20l o 6=|a—’0—2"—+—7‘. Since |a— P20*1_| o a—p—22|.
G2n a2n+1 l an+7l l a2n+1 2n
If B [0,1] and|a— Bl <&, then either 222 < q<f< P22 P2n < B <a<hP2
92n J2n+1 42n G2n+1 "
Since g is an increasing function, 2n+1
p p2ny| A 2
Lgfa) - glB)l < |g(222E1Y —g(E22)) = 2.2 =1 < —f— < €.
(42n+7) (02n)| ontl

In the next theorem, we make use of the Fibonacci sequence <f,>, where fg=1, f; =1, and f, = fp_ 1+ 2.
Theorem 5. The derivative of g at u = (—7 ++/5)/2 is infinite.
Proof. The continued fraction expansion of v is [0; a7, ap, -1, where a; = 1 for all / > 1. Therefore,
Pn = Pp-1*Pp-2 ad  Gn=qp-1+qp-2.
Sincep_1=1,p9=0,9-1=0,90=1,pp=fyand gp = frsyq.

I
Pon _ , P2nt2 _ |,
q2n q2n+2
then
=2 &2
P2n+2 < £
!I(U/—y(i—) _Z 52 Z: 52
lim @ =gl) oy 920427 g =1
X U u—Xx n — oo P2n n— oo f2n
u— =0 u—
q2n fan+1
which can be shown equal to (see [2], p. 15)
= 2
i=nt2 2%

lin - i —2A1+d™7Z) (——’ )n.
- u'z"_uzi’_] " -1+ 2u™™) \4
u—2n +u2n+2 .

Since _
17435y i dlu=gld)
au? 8 XU y—x
Similarly,

lim glu) =glx) _
X— Ut y—-x )
We omit the details

Definition. The numbersa=[ag; a7. a2, -/ and = [bg; by, b, -] are said to be equivalent provided
there exists an /V such thata, = b, forn > /.

Corollary 1. fa=[ap,; a7, a2, -] is equivalent to u, then gfa)= =.

Proof. Since ais equivalent to u, there exists an &/ such thata, = 1 forn = N. If
n

P2n < x <,‘7217+2 P <P2n+1

92n 92n+2 Gon+1

where Zn > /V, then
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gla) — glx) g(a)—g(g—%g) - 2
“ - a) — X > " _________~2_n+2 = l <
n My a—x > n‘ﬂ;noc Donti  Pon PR i=§'2 2/ (42nG2n+1).
a2n+1 Q2n
Sincea, =1forn=>MN,
an > f, = IL____(;U} "
5

Thus v

. P ; 7
n”ﬂ“ai@:_g'(x—} > lim_ 2 (W20 _ 20y 2t 200 :n“mmTZg (81 A1) (7_)

a—Xx a7 W L 4u

Since 1/4u? = (7+35)/8 > 1,
lim _M___M_: oo
X>o  g-x )
Similarly
tim gla) —gix) - o
x-—a a-x :
Corollary 2. n every subinterval of [0,1] there exists a ysuch that g(y) = .

Proof. Let
{a, B8] c (0,1], a= [Oas a2 ] and B=[0by1 b2 ~].

We may assume that 3 is not equivalent to v for if it is, there is nothing to prove.
Let r be the least integer n such that a, # 6,,. Choosing n such that 2n >t and b2,+2 > 1, we define

x = [0 by, b2, -, bop, =], ¥=1[0b1,b2 -, bopss, 1,1, 1,1, and y = [0;by, b2, -, ban+2,/.

Then a <x <y <y < fand yis equivalent to v. Thus the derivative of g at y is infinite.
The measure used in this next thearem is Lebesgue measure. The measure of a set A is denoted by m(A/

Theorvem 6. Foralmostall a=[0;a;, a2, -] (0, 1], gfa) = O

Proof. Let y
n n
A={acell 7]:nlimoe( I a,-) = Khinchin's constant } ,
=1
B = {a < (G1]: gTa) exists and is finite} , and

C={a<c(01]: a; > nlogn forinfinitely many values ofn}.
Since (see [1], pp. 93, 94), ‘
m(A) = m(B) = m(C) =1,
miAnBncC)=1
Let .
acAnBncC

and let {x,,} be any sequence converging to a. We define asecond sequence {y,,} in terms of the partial quo-
tients, o /g, of a. Let
Vn ={ Pm . 1 is the greatest integer such that ()l a— x,| < |a— 27| and
Om | Im

(ii) {a-x,/)and (a— Pm ) have the same sign}
I9m

We note thatm is an unbounded, non-decreasing function of n and thus m goes to infinityas » does and con-
versely. Since g is a strictly increasing function and noting that
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|
la— Pm+2) —|g_x,| and that (a— p—'—"ig)
I Im+2 Im+2
has the same sign as (a— ’&7—7) ,
Om

we have
((1} (ﬁm)
g g Im

a—Xp

gla)—g (’U—"’)
| \m!
_Pm+2

dm+2

l gla) — glx,) i <

a-Xp

[
y(al—g(%:) ‘ lam+2(qm+2+ gm+3]  [See [1],p. 20.]

1
< lg(a) - g<l—@) 202 .3
m

m
< (2-2_km)2q,%+3, where k= ), & .

Since Khinchin's constant is < 3,
m
9m = dmdm-1*19dm-2 < 2m n aj
=1
and a2 € A, we have that
m+3 2
q,%ﬂ < (2m+3 1 ai) < 22m*632m+6
i=1

[APR. 1977]

forsufficiently large values of m. Now a € implies that k., > m log m forinfinitely many values of m and thus

z@;a_o(n_}i < 28,98 (_ 36 )"

a-—Xp 2logm

for infinitely many values of m and n. As n goes to infinity, m goes to infinity and hence given any positive €,

the inequality | (@) — ol )
gla) — gixp
| a—Xp

will be satisfied for infinitely many values of n. Since a < B, g'fa/ exists and therefore g’(a)= 0.

Corollary. The function g is not absolutely continuous.

Proof. Since g is not a constant function and for almost all a € (0,7/ ga) = 0, it follows from a well known

theorem that g is not absolutely continuous. (See [31, p. 90.)
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