A MATRIX SEQUENCE ASSOCIATED WITH A CONTINUED FRACTION EXPANSION OF A NUMBER

DONALD B. SMALL
Colby College, Waterville, Maine 04901

INTRODUCTION

In Section 1, we introduce a matrix sequence each of whose terms is $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, denoted by L, or $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, denoted by R. We call such sequences $L R$-sequences. A one-to-one correspondence is established between the set of $L R$-sequences and the continued fraction expansions of numbers in the unit interval. In Section 2, a partial ordering of the numbers in the unit interval is given in terms of the $L R$-sequences and the resulting partially ordered set is a tree, called the Q-tree. A continued fraction expansion of a number is interpreted geometrically as an infinite pati, in the Ω-tree and conversely. In Section 3, we consider a special function, g, defined on the Q-tree. We show that g is continuous and strictly increasing, but that g is not absolutely continuous. The proof that g is not absolutely continuous is a measure theoretic argument that utilizes Khinchin's constant and the Fibonacci sequence.

1. THE $L R$-SEQUENCE

We denote the matrix $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ by L and the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ by R.
Definition. An $L R$-sequence is a sequence of 2×2 matrices, $M_{1}, M_{2}, \cdots, M_{i}, \cdots$ such that for each, , $M_{i}=L$ or $M_{i}=R$.
We shall represent points in the plane by column vectors with two components. The set $\mathcal{C}=\left\{\left.\binom{\alpha}{\beta} \right\rvert\,\right.$ both a and β are non-negative and at least one of a and β is positive $\}$ will be called the positive cone. Our present objective is to associate with each vector in the positive cone an $\angle R$-sequence.

Definition. A vector $\binom{\alpha}{\beta^{\alpha}} \in C$ is said to accept the $L R$-sequence $M_{1}, M_{2}, \cdots, M_{i}, \cdots$ if and only if there is a sequence

$$
\binom{\gamma_{0}}{\delta_{0}},\binom{\gamma_{1}}{\delta_{1}}, \cdots,\binom{\gamma_{i}}{\delta_{i}}, \ldots
$$

whose terms are vectors in C, such that

$$
\binom{\gamma_{0}}{\delta_{0}}=\binom{a}{\beta}
$$

and for each $i \geqslant 1,\binom{\gamma_{i-1}}{\delta_{i-1}}=M_{i}\binom{\gamma_{i}}{\delta_{i}}$.

$$
\text { If }\binom{\alpha}{\beta} \in C \text { and } a \leqslant \beta \text {, then }\binom{\alpha}{\beta}=\binom{\alpha}{\beta-\alpha} \text { and }\binom{\alpha}{\beta-\alpha} \in C \text {. }
$$

If $\beta \leqslant a$, then

$$
\binom{a}{\beta}=R\binom{a-\beta}{\beta} \quad \text { and } \quad\left({ }^{a-\beta} \beta\right) \in C .
$$

By induction it can be shown that every vector in C accepts at least one $L R$-sequence. If a is a positive irrational number, then $\binom{\alpha}{1}$ accepts exactly one $L R$-sequence; if a is a positive rational number, then $\binom{\alpha}{1}$ accepts two $L R$-sequences.
The expression $R^{a_{0}} L^{a_{1}} R^{a_{2}} \ldots$ will be used to designate the $L R$-sequence which consists of $a_{0} R^{\prime}$'s, followed by $a_{1} L$'s, followed by $a_{2} R$'s, etc.
We shall follow Khinchin's notation for continued fractions and express the continued fraction expansion of

$$
a, \quad a=a_{0}+\frac{1}{a_{1} \neq \frac{1}{a_{2}}+\ldots} \quad \text { as } a=\left[a_{0} ; a_{1}, a_{2}, \cdots\right] .
$$

The remainder after n elements in the expansion of a is denoted by $r_{n}=\left[a_{n} ; a_{n+1}, a_{n+2}, \cdots\right]$. All the well known terms and results of continued fractions used in this paper may be found in [1].

The orem 1. Let $a=\left[a_{0} ; a_{1}, a_{2}, \cdots\right]$ and let $\binom{\alpha}{1}$ accept the $L R$-sequence $R^{b_{0}} L^{b_{1}} R^{b_{2}} \ldots$. Then $b_{i}=a_{i}$ for all $i \geqslant 0$ and for

$$
k_{n}=\sum_{i=0}^{n} b_{i}, \quad \frac{\gamma_{k_{n}}}{\delta_{k_{n}}}=r_{n+1}(a)
$$

if n is odd and

$$
\frac{\gamma_{k_{n}}}{\delta_{k_{n}}}=\frac{1}{r_{n+1}(a)}
$$

if n is even.
Proof. Since $\binom{\alpha}{1}$ accepts $R^{b_{0}} L^{b_{1}} R^{b_{2}} \ldots$, there exists a sequence $\binom{\dot{\gamma}_{0}}{\delta_{0}},\binom{\gamma_{1}}{\delta_{1}},\binom{\gamma_{2}}{\delta_{2}}, \cdots$, whose terms are vectors in C, such that $\binom{\gamma_{0}}{\delta_{0}}=\binom{\alpha}{1}$ and such that if n is even and $k_{n} \leqslant k \leqslant k_{n+1}$, then

$$
\binom{\alpha}{1}=R^{b_{0} L^{b_{1}}} R^{b_{2}} \ldots R^{b_{n}} L^{k-k_{n}}\binom{\gamma_{k}}{\delta_{k}}
$$

and if n is odd, then

$$
\binom{\alpha}{1}=R^{b_{0} L^{b_{1}} R^{b_{2}} \ldots L^{b_{n}} R^{k-k_{n}}\binom{\gamma_{k}}{\delta_{k}} . ~ . ~ . ~}
$$

Since

$$
r_{n}=\left[a_{n} ; r_{n+1}\right], \quad r_{n+1}=\frac{1}{r_{n}-a_{n}} \quad \text { and } \quad a_{n}=\left[r_{n}\right]
$$

Therefore a_{n} is the least integer j such that $r_{n}-j<1$.
We now use induction on n. For $n=0, r_{0}=a$. Since a_{O} is the least integer j such that

$$
a-j<1, \quad\binom{\alpha}{1}=R^{a_{0}}\binom{\gamma_{a_{0}}}{\delta_{a_{0}}}
$$

where $\gamma_{a_{0}}=a-a_{0}$ and $\delta_{a_{0}}=1$. Thus

$$
b_{0}=a_{0} \quad \text { and } \quad \frac{\gamma k_{0}}{\delta_{k_{0}}}=\frac{a-a_{0}}{1}=\frac{1}{r_{1}} .
$$

We assume the result for $0 \leqslant t<n$ and then consider two cases.
CASE 1. Let n be odd. Then

$$
\frac{\gamma_{k_{n}-b_{n}}}{\delta_{k_{n}-b_{n}}}=\frac{\gamma_{k_{n-1}}}{\delta_{k_{n-1}}}=\frac{1}{r_{n}}<1
$$

and since a_{n} is the least integer j such that $r_{n}-j<1$,

$$
\binom{\gamma_{k_{n}-b_{n}}}{\delta_{k_{n}-b_{n}}}=L^{a_{n}}\binom{\gamma_{k_{n}}}{\delta_{k_{n}}} \text {, where } \quad \gamma_{k_{n}}=\gamma_{k_{n}-b_{n}} \quad \text { and } \quad \delta_{k_{n}}=\delta_{k_{n}-b_{n}}-a_{n} \gamma_{k_{n}-b_{n}} \text {. }
$$

Thus

$$
b_{n}=a_{n} \quad \text { and } \quad \frac{\gamma_{k_{n}}}{\delta_{k_{n}}}=\frac{\gamma_{k_{n}-b_{n}}}{\delta_{k_{n}-b_{n}}-a_{n} \gamma_{k_{n}-b_{n}}}=\frac{1}{r_{n}-a_{n}}=r_{n+1} .
$$

CASE 2. Let n be even. Then

$$
\frac{\gamma_{k_{n}-b_{n}}}{\delta_{k_{n}-b_{n}}}=\frac{\gamma_{k_{n-1}}}{\delta_{k_{n-1}}}=r_{n}
$$

and since a_{n} is the least integer j such that $r_{n}-j<1$,

$$
\binom{\gamma_{k_{n}-b_{n}}}{\delta_{k_{n}-b_{n}}}=R^{a_{n}}\binom{\gamma_{k_{n}}}{\delta_{k_{n}}}, \quad \text { where } \quad \gamma_{k_{n}}=\gamma_{k_{n}-b_{n}}-a_{n} \delta_{k_{n}-b_{n}} \text { and } \delta_{k_{n}}=\delta_{k_{n}-b_{n}} .
$$

Thus

$$
b_{n}=a_{n} \quad \text { and } \quad \frac{\gamma_{k_{n}}}{\delta_{k_{n}}}=\frac{\gamma_{k_{n}-b_{n}}-a_{n} \delta_{k_{n}-b_{n}}}{\delta_{k_{n}-b_{n}}}=r_{n}-a_{n}=\frac{1}{r_{n+1}} .
$$

The preceding theorem can be extended to hold for rational a by modifying the notation as follows:
(i) If $a_{n}=1$, express $\left[0 ; a_{1}, a_{2}, \cdots, a_{n}\right]$ as either

$$
\left[0 ; a_{1}, a_{2}, \cdots, a_{n}, \infty\right] \text { or }\left[0 ; a_{1}, a_{2}, \cdots, a_{n-1}+1, \infty\right] \text { or }
$$

(ii) If $a_{n} \neq 1$, express $\left[0 ; a_{1}, a_{2}, \cdots, a_{n}\right]$ as either

$$
\left[0 ; a_{1}, a_{2}, \cdots, a_{n}-1, \infty\right] \text { or }\left[0 ; a_{1}, a_{2}, \cdots, a_{n}, \infty\right]
$$

When we permit the use of these expressions we shall speak of continued fractions in the wider sense. One sees that the method of LR-sequences provides a common form for the continued fraction expansions for both rational and irrational numbers. (The non-uniqueness, however, of the expansion of a rational number still persists.)

Definition. Let $a=\left[a_{0} ; a_{1}, a_{2}, \cdots\right]$. The $k^{\text {th }}$ order convergent of a is

$$
\frac{p_{k}(a)}{a_{k}(a)}=\left[a_{0} ; a_{1}, a_{2}, \cdots, a_{k}\right]
$$

where

$$
p_{-1}(a)=1, \quad p_{0}(a)=0, \quad q_{-1}(a)=0, \quad q_{0}(a)=1,
$$

and for $k \geqslant 1$,

$$
p_{k}(a)=a_{k} p_{k-1}(a)+p_{k-2}(a) \quad \text { and } \quad q_{k}(a)=a_{k} q_{k-1}(a)+q_{k-2}(a)
$$

When no confusion will result, we shall omit the reference to a and write p_{k}, q_{k} for $p_{k}(a), q_{k}(a)$.
An important proposition in the theory of continued fractions is: If

$$
a=\left[a_{0} ; a_{1}, a_{2}, \cdots, a_{n}, r_{n+1}\right] \text {, then } a=\frac{p_{n+1}}{q_{n+1}}=\frac{r_{n+1} p_{n}+p_{n-1}}{r_{n+1} q_{n}+q_{n-1}} .
$$

We give an analogue of this result in the following theorem and its corrolary.
The orem 2. If $a=\left[0 ; a_{1}, a_{2}, \cdots\right],\binom{\alpha}{1}$ accepts the LR-sequence M_{1}, M_{2}, \cdots, and

$$
k_{n}=\sum_{i=1}^{n} a_{i}
$$

then

$$
\prod_{i=1}^{k_{n}} M_{i}= \begin{cases}\left(\begin{array}{ll}
p_{n-1} & p_{n} \\
q_{n-1} & q_{n}
\end{array}\right) & \text { if } n \text { is even } \\
\left(\begin{array}{ll}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right) & \text { if } n \text { is odd. }\end{cases}
$$

Proof. We use induction on n. For $n=1$,

$$
\prod_{i=1}^{k_{1}} M_{i}=L^{a_{1}}=\left(\begin{array}{ll}
1 & 0 \\
a_{1} & 1
\end{array}\right)=\left(\begin{array}{ll}
p_{1} & p_{0} \\
a_{1} & a_{0}
\end{array}\right)
$$

We assume the result for $1 \leqslant t<n$ and then consider two cases.

CASE 1. Let n be even.

$$
\prod_{i=1}^{k_{n}} M_{i}=\left(\prod_{i=1}^{k_{n-1}} M_{i}\right) R^{a_{n}}=\left(\begin{array}{cc}
p_{n-1} & p_{n-2} \\
q_{n-1} & q_{n-2}
\end{array}\right)\left(\begin{array}{cc}
1 & a_{n} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
p_{n-1} & a_{n} p_{n-1}+p_{n-2} \\
q_{n-1} & a_{n} a_{n-1}+q_{n-2}
\end{array}\right)=\left(\begin{array}{ll}
p_{n-1} & p_{n} \\
q_{n-1} & q_{n}
\end{array}\right)
$$

CASE 2. Let n be odd.

$$
\prod_{i=1}^{k_{n}} M_{i}=\left(\prod_{i=1}^{k_{n-1}} M_{i}\right) L^{a_{n}}=\left(\begin{array}{cc}
p_{n-2} & p_{n-1} \\
q_{n-2} & q_{n-1}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
a_{n} & 1
\end{array}\right)=\left(\begin{array}{cc}
p_{n-2}+a_{n} p_{n-1} & p_{n-1} \\
q_{n-2}+a_{n} a_{n-1} & q_{n-1}
\end{array}\right)=\left(\begin{array}{cc}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right)
$$

Corollary. If $a=\left[0 ; a_{1}, a_{2}, \cdots\right],\binom{\alpha}{1}$ accepts the LR-sequence M_{1}, M_{2}, \cdots, and

$$
k_{n}=\sum_{i=1}^{n} a_{i}, \quad \text { then } \quad\binom{\alpha}{1}=\left(\begin{array}{cc}
p_{n} & p_{n-1} \\
q_{n} & a_{n-1}
\end{array}\right)\binom{\gamma_{k_{n}}}{\delta_{k_{n}}}, \quad \text { where } \quad \frac{\gamma_{k_{n}}}{\delta_{k_{n}}}=r_{n+1}(a) .
$$

The well known result,

$$
p_{n-1} q_{n}-p_{n} q_{n-1}=(-1)^{n}
$$

is an immediate consequence of the above theorem and the fact that $\operatorname{det}(L)=\operatorname{det}(R)=1$.

2. THE Q-TREE

Although $\binom{\alpha}{1}$ accepts two LR-sequences when a is rational, these two sequences coincide up through a certain initial segment.

Definition. Let a be a positive rational number and let $\binom{\alpha}{1}$ accept the LR-sequence M_{1}, M_{2}, \cdots. We call the initial segment $M_{1}, M_{2}, \cdots, M_{n}$ a head of a if and only if

$$
\binom{\alpha}{1}=M_{1}, M_{2}, \cdots, M_{n}\binom{1}{1} .
$$

If a is a positive rational number, the head of a exists and is unique. Thus if $M_{1}, M_{2}, \cdots, M_{n}$ is the head of a, then the two $L R$-sequences accepted by $\binom{\alpha}{\beta}$ are $M_{1}, M_{2}, \cdots, M_{n}, R, L, L, L, \cdots$ and $M_{1}, M_{2}, \cdots, M_{n}, L, R, R, R, \cdots$.
Definition. Let a_{1} and a_{2} be rational numbers in $(0,1]$. We say that a_{1} is Q-related to a_{2} if and only if the head of a_{1} is an initial segment of the head of a_{2}.
The Q relation is a partial ordering of the rational numbers in (0,1] , and the resulting partially ordered set is a tree.

Definition. The set of rational numbers in $(0,1]$ partially ordered by Q is called the Q-tree.
We may now interpret the continued fraction expansion of a number (in the wider sense) geometrically as an infinite path in the Q-tree. Conversely, any infinite path in the Q-tree determines an LR-sequence and thus the continued fraction expansion (in the wider sense) for some number.
The following diagram is an indication of the graphical picture of the Q-tree.

(etc.)
Figure 1

3. THE FUNCTION g

Definition. Let $a \in[0,1]$ and let $\binom{\alpha}{1}$ accept the LR-sequence M_{1}, M_{2}, \cdots. We then define g on the unit interval by

$$
g(a)=2 \sum_{j=1}^{\infty} c_{j} 2^{-j}, \quad \text { where } \quad c_{j}=\left\{\begin{array}{l}
0 \text { if } M_{j}=L \\
1 \text { if } M_{j}=R
\end{array} .\right.
$$

It is clear that g is a one-to-one function.
Theorem 3. For $0 \leqslant a \leqslant 1, g$ is a strictly increasing function.
Proof. Let $0 \leqslant a<\beta \leqslant 1, a=\left[0 ; a_{1}, a_{2}, \cdots\right], \beta=\left[0 ; b_{1}, b_{2}, \cdots\right]$ and let t be the least integer n such that $a_{n} \neq b_{n}$. Thus $p_{k}(a)=p_{k}(\beta)$ and $q_{k}(a)=q_{k}(\beta)$ for $0 \leqslant k<t$.

Now

$$
a<\beta \text { iff } \frac{r_{t}(\beta) p_{t-1}+p_{t-2}}{r_{t}(\beta) q_{t-1}+q_{t-2}}-\frac{r_{t}(a) p_{t-1}+p_{t-2}}{r_{t}(a) q_{t-1}+q_{t-2}}>0
$$

if and only if

$$
r_{t}(a)\left(p_{t-2} q_{t-1}-p_{t-1} q_{t-2}\right)+r_{t}(\beta)\left(p_{t-1} q_{t-2}-p_{t-2} q_{t-1}\right)>0
$$

if and only if

$$
\left(r_{t}(a)-r_{t}(\beta)\right)(-1)^{t-1}>0
$$

Therefore, $r_{t}(a)>r_{t}(\beta)$ if and only if t is odd. Since

$$
r_{t}(a)=\left[a_{t} ; r_{t+1}(a)\right] \quad \text { and } \quad r_{t}(\beta)=\left[b_{t} ; r_{t+1}(\beta)\right], \quad a_{t}>b_{t}
$$

if and only if t is odd. We consider two cases determined by the parity of t.
CASE 1. Let t be odd. In this case $a_{t}>b_{t}$. If

If

$$
r=\sum_{i=1}^{t} a_{i}, \quad \text { then } \quad g(a) \leqslant g\left(\frac{p_{t-1}(a)}{q_{t-1}(a)}\right)+\frac{2}{2^{r-1}}
$$

$$
s=\sum_{i=1}^{t} b_{i}, \quad \text { then } g(\beta) \geqslant g\left(\frac{p_{t-1}(\beta)}{q_{t-1}(\beta)}\right)+\frac{2}{2^{s}}
$$

Since g is a one-to-one function, $s<r$ and

$$
g\left(\frac{p_{t-1}(a)}{q_{t-1}(a)}\right)=g\left(\frac{p_{t-1}(\beta)}{q_{t-1}(\beta)}\right) \quad \text { implies that } \quad g(a)-g(\beta) \leqslant \frac{2}{2^{r-1}}-\frac{2}{2^{s}} \leqslant 0
$$

with equality holding if and only if $a=\beta$. Thus $g(a)<g(\beta)$.
CASE 2. Let t be even. In this case $a_{t}<b_{t}$ and so $s>r$. Now

$$
g(a) \leqslant g\left(\frac{p_{t-1}(a)}{q_{t-1}(a)}\right)+\frac{2}{2^{r-a} t} \sum_{i=1}^{a_{t}} \frac{1}{2^{i}}+\frac{2}{2^{r+1}} \quad \text { and } \quad g(\beta) \geqslant g\left(\frac{p_{t-1}(\beta)}{q_{t-1}(\beta)}\right)+\frac{2}{2^{s-b_{t}}} \sum_{i=1}^{b_{t}} \frac{1}{2^{i}} .
$$

Since $r-a_{t}=s-b_{t}$,

$$
g(a)-g(\beta)=\frac{2}{2^{r-a} t}\left[\sum_{i=1}^{a_{t}} \frac{1}{2^{i}}-\sum_{i=1}^{b_{t}} \frac{1}{2^{i}}\right]+\frac{2}{2^{r+1}}=-\sum_{i=r+1}^{s} \frac{2}{2^{i}}+\frac{2}{2^{r+1}} \leqslant 0
$$

with equality holding if and only if $a=\beta$. Thus $g(a)<g(\beta)$.
Corollary. For $a \in[0,1], g^{\prime}(a)$ exists and is finite almost everywhere.
Theorem 4. For $0 \leqslant a \leqslant 1, g$ is a continuous function.
Proof. Let $a \in[0,1], a=\left[0 ; a_{1}, a_{2}, \cdots\right]$. For any $\epsilon>0$, choose an n such that

$$
\frac{1}{2^{2 n}}<\epsilon .
$$

Since the even ordered convergents form an increasing sequence converging to a and the odd ordered convergents form a decreasing sequence converging to a, (see [1], p. 6 and p .9),

$$
\frac{p_{2 n}}{q_{2 n}}<a<\frac{p_{2 n+1}}{q_{2 n+1}} . \quad \text { Let } \quad \delta=\left|a-\frac{p_{2 n+1}}{q_{2 n+1}}\right| . \text { Since }\left|a-\frac{p_{2 n+1}}{q_{2 n+1}}\right|<\left|a-\frac{p_{2 n}}{q_{2 n}}\right| .
$$

If $\beta \in[0,1]$ and $|a-\beta|<\delta$, then either $\frac{p_{2 n}}{q_{2 n}}<a \leqslant \beta<\frac{p_{2 n+1}}{q_{2 n+1}}$ or $\frac{p_{2 n}}{q_{2 n}}<\beta \leqslant a<\frac{p_{2 n+1}}{q_{2 n+1}}$.
Since g is an increasing function,

$$
\begin{aligned}
& \text { reasing function, } \\
& |g(a)-g(\beta)|<\left|g\left(\frac{p_{2 n+1}}{q_{2 n+1}}\right)-g\left(\frac{p_{2 n}}{q_{2 n}}\right)\right|=2 \cdot 2^{-\sum_{i=1}^{2 n+1} a_{i}} \leqslant \frac{2}{2^{n+1}}<\epsilon .
\end{aligned}
$$

In the next theorem, we make use of the Fibonacci sequence $\left\langle f_{n}\right\rangle$, where $f_{0}=1, f_{1}=1$, and $f_{n}=f_{n-1}+f_{n-2}$.
Theorem 5. The derivative of g at $u=(-1+\sqrt{5}) / 2$ is infinite.
Proof. The continued fraction expansion of u is $\left[0 ; a_{1}, a_{2}, \cdots\right]$, where $a_{i}=1$ for all $i \geqslant 1$. Therefore,

$$
p_{n}=p_{n-1}+p_{n-2} \quad \text { and } \quad q_{n}=q_{n-1}+q_{n-2} .
$$

Since $p_{-1}=1, p_{0}=0, q_{-1}=0, q_{0}=1, p_{n}=f_{n}$ and $q_{n}=f_{n+1}$.
If

$$
\frac{p_{2 n}}{q_{2 n}}<x \leqslant \frac{p_{2 n+2}}{q_{2 n+2}}<u
$$

then
which can be shown equal to (see [2], p. 15)

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=n+2}^{\infty} \frac{2}{2^{2 i}}}{u\left[1-\frac{u^{-2 n}-u^{2 n}}{u^{-2 n}+u^{2 n+2}}\right]}=\lim _{n \rightarrow \infty} \frac{2\left(1+u^{4 n+2}\right)}{3 u\left(u^{2}-1+2 u^{-4 n}\right)}\left(\frac{1}{4 u^{4}}\right)^{n} .
$$

Since

$$
\frac{1}{4 u^{4}}=\frac{7+3 \sqrt{5}}{8}>1, \quad \lim _{x \rightarrow u^{-}} \frac{g(u)-g(x)}{u-x}=\infty
$$

Similarly,

$$
\lim _{x \rightarrow u^{+}} \frac{g(u)-g(x)}{u-x}=\infty .
$$

We omit the details
Definition. The numbers $a=\left[a_{0} ; a_{1} . a_{2}, \cdots\right]$ and $\beta=\left[b_{0} ; b_{1}, b_{2}, \cdots\right]$ are said to be equivalent provided there exists an N such that $a_{n}=b_{n}$ for $n \geqslant N$.
Corollary 1. If $a=\left[a_{0} ; a_{1}, a_{2}, \cdots\right]$ is equivalent to u, then $g^{\prime}(a)=\infty$.
Proof. Since a is equivalent to u, there exists an N such that $a_{n}=1$ for $n \geqslant N$. If

$$
\frac{p_{2 n}}{q_{2 n}}<x \leqslant \frac{p_{2 n+2}}{q_{2 n+2}}<a<\frac{p_{2 n+1}}{q_{2 n+1}} .
$$

where $2 n \geqslant N$, then

$$
\lim _{n \rightarrow \alpha^{-}} \frac{g(a)-g(x)}{a-x} \geqslant \lim _{n \rightarrow \infty} \frac{g(a)-g\left(\frac{p_{2 n+2}}{q_{2 n+2}}\right)}{\frac{p_{2 n+1}}{q_{2 n+1}}-\frac{p_{2 n}}{q_{2 n}}}=\lim _{n \rightarrow \infty} \sum_{i=n+2}^{\infty} \frac{2}{2^{2 i}}\left(q_{2 n} q_{2 n+1}\right)
$$

Since $a_{n}=1$ for $n \geqslant N$,

$$
q_{n} \geqslant f_{n}=\frac{u^{n}-(-u)^{-n}}{\sqrt{5}} .
$$

Thus
$\lim _{n \rightarrow \alpha^{-}} \frac{g(a)-g(x)}{a-x} \geqslant \lim _{n \rightarrow \infty} \frac{2}{15 \cdot 4^{n}}\left(u^{2 n}-u^{-2 n}\right)\left(u^{2 n+1}+u^{-2 n-1}\right)=\lim _{n \rightarrow \infty} \frac{2}{15}\left(u^{8 n+1}+u^{4 n-1}-u^{-1}\right)\left(\frac{1}{4 u^{4}}\right)^{n}$
Since $1 / 4 u^{4}=(7+3 \sqrt{5}) / 8>1$,

$$
\lim _{x \rightarrow \alpha^{-}} \frac{g(a)-g(x)}{a-x}=\infty
$$

Similarly

$$
\lim _{x \rightarrow \alpha^{+}} \frac{g(a)-g(x)}{a-x}=\infty .
$$

Corollary 2. In every subinterval of $[0,1]$ there exists a γ such that $g^{\prime}(\gamma)=\infty$.
Proof. Let

$$
(a, \beta] \subset(0,1], \quad a=\left[0 ; a_{1}, a_{2}, \cdots\right] \quad \text { and } \quad \beta=\left[0 ; b_{1}, b_{2}, \cdots\right] .
$$

We may assume that β is not equivalent to u for if it is, there is nothing to prove.
Let t be the least integer n such that $a_{n} \neq b_{n}$. Choosing n such that $2 n>t$ and $b_{2 n+2}>1$, we define
$x=\left[0 ; b_{1}, b_{2}, \cdots, b_{2 n}, \infty\right], \quad \gamma=\left[0 ; b_{1}, b_{2}, \cdots, b_{2 n+1}, 1,1,1, \cdots\right], \quad$ and $\quad y=\left[0 ; b_{1}, b_{2}, \cdots, b_{2 n+2}, \infty\right]$.
Then $a<x<\gamma<y<\beta$ and γ is equivalent to u. Thus the derivative of g at γ is infinite.
The measure used in this next theorem is Lebesgue measure. The measure of a set A is denoted by $m(A)$.
Theorem 6. For almost all $a=\left[0 ; a_{1}, a_{2}, \cdots\right] \in(0,1], g^{\prime}(a)=0$.
Proof. Let

$$
\begin{gathered}
A=\left\{a \in(0,1]: \lim _{n \rightarrow \infty}\left(\prod_{i=1}^{n} a_{i}\right)^{1 / n}=\text { Khinchin's constant }\right\}, \\
B=\left\{a \in(0,1]: g^{\prime}(a) \text { exists and is finite }\right\}, \text { and } \\
C=\left\{a \in(0,1]: a_{n}>n \log n \text { for infinitely many values of } n\right\} .
\end{gathered}
$$

Since (see [1], pp. 93, 94),

$$
\begin{gathered}
m(A)=m(B)=m(C)=1, \\
m(A \cap B \cap C)=1 .
\end{gathered}
$$

Let

$$
a \in A \cap B \cap C
$$

and let $\left\{x_{n}\right\}$ be any sequence converging to a. We define a second sequence $\left\{y_{n}\right\}$ in terms of the partial quotients, p_{m} / q_{m}, of a. Let

$$
\begin{aligned}
& y_{n}=\left\{\frac{p_{m}}{q_{m}}: m \text { is the greatest integer such that (i) }\left|a-x_{n}\right| \leqslant\left|a-\frac{p_{m}}{q_{m}}\right|\right. \text { and } \\
& \left.\qquad \text { (ii) }\left(a-x_{n}\right) \text { and }\left(a-\frac{p_{m}}{q_{m}}\right) \text { have the same sign }\right\}
\end{aligned}
$$

We note that m is an unbounded, non-decreasing function of n and thus m goes to infinity as n does and conversely. Since g is a strictly increasing function and noting that

$$
\left|a-\frac{p_{m+2}}{q_{m+2}}\right|<\left|a-x_{n}\right| \quad \text { and that } \quad\left(a-\frac{p_{m+2}}{q_{m+2}}\right)
$$

has the same sign as

$$
\left(a-\frac{p_{m}}{q_{m}}\right)
$$

we have

$$
\begin{aligned}
\left|\frac{g(a)-g\left(x_{n}\right)}{a-x_{n}}\right| & \leqslant\left|\frac{g(a)-g\left(\frac{p_{m}}{q_{m}}\right)}{a-x_{n}}\right| \\
& <\left|\frac{g(a)-g\left(\frac{p_{m}}{q_{m}}\right)}{a-\frac{p_{m+2}}{q_{m+2}}}\right| \\
& =\left|g(a)-g\left(\frac{p_{m}}{q_{m}}\right)\right|\left[q_{m+2}\left(q_{m+2}+q_{m+3}\right] \quad\right. \text { [See [1], p. 20.] } \\
& <\left|g(a)-g\left(\frac{p_{m}}{q_{m}}\right)\right| 2 a_{m+3}^{2} \\
& \leqslant\left(2.2^{-k m}\right) 2 q_{m+3}^{2}, \quad \text { where } \quad k_{m}=\sum_{i=1}^{m} a_{i} .
\end{aligned}
$$

Since Khinchin's constant is <3,

$$
q_{m}=a_{m} q_{m-1}+q_{m-2}<2^{m} \prod_{i=1}^{m} a_{i}
$$

and $a \in A$, we have that

$$
q_{m+3}^{2}<\left(2^{m+3} \prod_{i=1}^{m+3} a_{i}\right)^{2}<2^{2 m+6} 3^{2 m+6}
$$

for sufficiently large values of m. Now $a \in C$ implies that $k_{m}>m \log m$ for infinitely many values of m and thus

$$
\left|\frac{g(a)-g\left(x_{n}\right)}{a-x_{n}}\right|<2^{8} \cdot 3^{6}\left(\frac{36}{2^{\log m}}\right)^{m}
$$

for infinitely many values of m and n. As n goes to infinity, m goes to infinity and hence given any positive ϵ, the inequality

$$
\left|\frac{g(a)-g\left(x_{n}\right)}{a-x_{n}}\right|<\epsilon
$$

will be satisfied for infinitely many values of n. Since $a \in B, g^{\prime}(a)$ exists and therefore $g^{\prime}(a)=0$.
Corollary. The function g is not absolutely continuous.
Proof. Since g is not a constant function and for almost all $a \in(0,1] g^{\prime}(a)=0$, it follows from a well known theorem that g is not absolutely continuous. (See [3], p. 90.)

REFERENCES

1. A. Ya. Khinchin, Continued Fractions, 3rd ed., Chicago: The University of Chicago Press, 1964.
2. N. N. Vorobyov, The Fibonacci Numbers, Boston: D. C. Heath and Company, 1963.
3. H. L. Royden, Real Analysis, New York: The Macmillan Company, 1963.
