PROPERTIES OF SOME FUNCTIONS SIMILAR TO LUCAS FUNCTIONS

H. C. WILLLIAMS
Department of Computer Science, University of Manitoba, Winnipeg, Manitola, Canada R3T2N2

1. INTRODUCTION

The ordinary Lucas functions are defined by

$$
\begin{equation*}
v_{n}=a_{1}^{n}+a_{2}^{n}, \quad u_{n}=\left(a_{1}^{n}-a_{2}^{n}\right) /\left(a_{1}-a_{2}\right), \tag{1.1}
\end{equation*}
$$

where a_{1}, a_{2} are the roots of

$$
x^{2}=P x-0,
$$

$\Delta=\left(a_{1}-a_{2}\right)^{2}=P^{2}-4 Q$, and P, Q are coprime integers. These functions and their remarkable properties have been discussed by many authors. The best known works are those of Lucas [7] and Carmichael [3]. Lehmer [6] has dealt with a more general form of these functions for which $P=\sqrt{R}$ and R, Q are coprime integers.
Bell [1] attributed the existence of the many properties of the Lucas functions to the simplicity of the functions' form. He added, "this simplicity vanishes, apparently irrevocably, when we pass beyond second order series." The purpose of this paper is to define a set of third order functions W_{n}, V_{n}, U_{n}, and to show that these functions possess much of the "arithmetic fertility" of the Lucas functions.

Consider first the functions v_{n} and u_{n}, which are defined in the following manner. We let ρ_{1}, ρ_{2} be the roots of

$$
x^{2}=r x+s
$$

and

$$
2 a_{1}=v_{1}+u_{1} \rho_{1}, \quad 2 a_{2}=v_{1}+u_{1} \rho_{2},
$$

where $s, r_{1} v_{1}, u_{1}$ are given integers. We then put

$$
v_{n}=\frac{2}{\delta}\left|\begin{array}{ll}
a_{1}^{n} & \rho_{1} \\
a_{2}^{n} & \rho_{2}
\end{array}\right|, \quad u_{n}=\frac{2}{\delta}\left|\begin{array}{ll}
1 & a_{1}^{n} \\
1 & a_{2}^{n}
\end{array}\right|,
$$

where

$$
\delta=\left|\begin{array}{ll}
1 & \rho_{1} \\
1 & \rho_{2}
\end{array}\right|
$$

If we select values for s, r, v_{1}, u_{1} such that v_{n}, u_{n} are both integers for all non-negative integer values of n, then $P=a_{1}+a_{2}$ and $Q=a_{1} a_{2}$ will be integers. If we further restrict our choices of values for r, s, v_{1}, u_{1} such that $(P, Q)=1$, then it can be easily shown that the resulting furctions v_{n} and u_{n} have many properties analogous to those of the ordinary Lucas functions. Indeed, if we select $s=\Delta, r=0, v_{1}=P, u_{1}=1$, the functions u_{n} and v_{n} are the functions given by (1.1).
In this paper we shall be concerned with the third order analogues of the above functions. We let $\rho_{1}, \rho_{2}, \rho_{3}$ be the roots of

$$
x^{3}=r x^{2}+s x+t \quad \text { and } \quad 3 a_{i}=W_{1}+V_{1} \rho_{i}+U_{1} \rho_{i}^{2} \quad(i=1,2,3),
$$

where $r, s, t, W_{1}, V_{1}, U_{1}$ are given integers. We define

$$
W_{n}=\frac{3}{\delta}\left|\begin{array}{lll}
a_{1}^{n} & \rho_{1} & \rho_{1}^{2} \tag{1.3}\\
a_{2}^{n} & \rho_{2} & \rho_{2}^{2} \\
a_{3}^{n} & \rho_{3} & \rho_{3}^{2}
\end{array}\right|, \quad V_{n}=\frac{3}{\delta}\left|\begin{array}{lll}
1 & a_{1}^{n} & \rho_{1}^{2} \\
1 & a_{2}^{n} & \rho_{2}^{2} \\
1 & a_{3}^{n} & \rho_{3}^{2}
\end{array}\right|, \quad U_{n}=\frac{3}{\delta}\left|\begin{array}{lll}
1 & \rho_{1} & a_{1}^{n} \\
1 & \rho_{2} & a_{2}^{n} \\
1 & \rho_{2} & a_{3}^{n}
\end{array}\right|,
$$

where

$$
\delta=\left|\begin{array}{lll}
1 & \rho_{1} & \rho_{1}^{2} \\
1 & \rho_{2} & \rho_{2}^{2} \\
1 & \rho_{3} & \rho_{3}^{2}
\end{array}\right| \neq 0
$$

We also put $P=a_{1}+a_{2}+a_{3}, Q=a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}, R=a_{1} a_{2} a_{3}, \Delta=\delta^{2}$.
Let N be the set of positive integers. If we restrict the values of $r, s, t, W_{1}, V_{1}, U_{1}$ such that
(1) W_{n}, V_{n}, U_{n} are all integers for any $n \in N$,
(2) P, Q, R are integers and $(P, Q, R)=1$,
(3) there exists $\mu \in N$ such that $U_{i} \equiv U_{i+k \mu}(\bmod 3)$ for all $i, k \in N$,
the functions W_{n}, V_{n}, U_{n} have several characteristics similar to those of the Lucas functions. Functions similar to W_{n}, V_{n}, U_{n} have been discussed by Williams [10] and [11, $(q=3)$], but for these functions $r=s=0, \Delta=t$.

Conditions (1) and (2) are analogous to the two restrictions placed on the functions of (1.2). These two restrictions guarantee that there exists an integer $m \in N$ such that $u_{i} \equiv u_{i+k m}(\bmod 2)$ for any $i, k \in N$; however, we shall see that conditions (1) and (2) do not imply (3).

It is necessary to demonstrate what the conditions on $r, s, t, W_{1}, V_{1}, U_{1}$ are such that (1), (2), (3) are true. In order to do this, we require several identities satisfied by W_{n}, V_{n} and U_{n}. These identities, which are independent of (1), (2), (3), are given in Section 2.

2. IDENTITIES

It is not difficult to see from (1.3) that

$$
\begin{equation*}
3^{n-1}\left(W_{n}+\rho V_{n}+\rho^{2} U_{n}\right)=\left(W_{1}+\rho V_{1}+\rho^{2} U_{1}\right)^{n} \tag{2.1}
\end{equation*}
$$

where $\rho=\rho_{1}, \rho_{2}, \rho_{3}$. It follows that

$$
\begin{gather*}
3 W_{n+m}=W_{n} W_{m}+t V_{n} U_{m}+t U_{n} V_{m}+t r U_{m} U_{n} \\
3 V_{n+m}=V_{n} W_{m}+W_{n} V_{m}+s V_{m} U_{n}+s V_{n} U_{m}+(r s+t) U_{n} U_{m} \tag{2.2}\\
3 U_{n+m}=W_{m} U_{n}+W_{n} U_{m}+V_{n} V_{m}+r U_{m} V_{n}+r U_{n} V_{m}+\left(r^{2}+s\right) U_{n} U_{m}
\end{gather*}
$$

$$
\begin{equation*}
3 W_{2 m}=W_{m}^{2}+2 t V_{m} U_{m}+t r U_{m}^{2} \tag{2.3}
\end{equation*}
$$

$$
\begin{gather*}
3 R^{m} W_{-m}=W_{m}^{2}+r W_{m} V_{m}+\left(r^{2}+2 s\right) W_{m} U_{m}-s V_{m}^{2}-(r s+t) U_{m} V_{m}+\left(s^{2}-r t\right) U_{m}^{2} \\
3 R^{m} V_{-m}=-W_{m} V_{m}-r V_{m}^{2}-r^{2} U_{m} V_{m}+(r s+t) U_{m}^{2} \tag{2.5}\\
3 R^{m} U_{-m}=-W_{m} U_{m}+V_{m}^{2}+r U_{m} V_{m}-s U_{m}^{2}
\end{gather*}
$$

By using methods similar to those of Williams [12], we can show that
where

$$
g R^{m} W_{n-m}=\left|\begin{array}{ccc}
W_{n} & t U_{m} & t V_{m}+r t U_{m} \\
V_{n} & W_{m}+s U_{m} & s V_{m}+(r s+t) U_{m} \\
U_{n} & V_{m}+r U_{m} & W_{m}+r V_{m}+\left(r^{2}+s\right) U_{m}
\end{array}\right|
$$

$$
g R^{m} V_{n-m}=\left|\begin{array}{ccc}
W_{m} & W_{n} & t V_{m}+r t U_{m} \\
V_{m} & V_{n} & s V_{m}+(r s+t) U_{m} \\
U_{m} & U_{n} & W_{m}+r V_{m}+\left(r^{2}+s\right) U_{m}
\end{array}\right|
$$

$$
g R^{m} U_{n-m}=\left|\begin{array}{ccc}
W_{m} & t U_{m} & W_{n} \\
V_{m} & W_{m}+s U_{m} & V_{n} \\
U_{m} & V_{n}+r U_{m} & U_{n}
\end{array}\right|
$$

$$
27 R^{m}=\left|\begin{array}{ccc}
W_{m} & t U_{m} & t V_{m}+r t U_{m} \tag{2.7}\\
V_{m} & W_{m}+s U_{m} & s V_{m}+(r s+t) U_{m} \\
U_{m} & V_{m}+r U_{m} & W_{m}+r V_{m}+\left(r^{2}+s\right) U_{m}
\end{array}\right|
$$

$$
\left|\begin{array}{ccc}
W_{n} & v_{n} & U_{n} \\
W_{n+m} & V_{n+m} & U_{n+m} \\
W_{n+2 m} & v_{n+2 m} & U_{n+2 m}
\end{array}\right|=R^{n} N_{m}
$$

$$
27\left|\begin{array}{ccc}
W_{n} & W_{n+m} & W_{n+2 m} \\
W_{n+m} & W_{n+2 m} & W_{n+3 m} \\
W_{n+2 m} & W_{n+3 m} & W_{n+4 m}
\end{array}\right|=-R^{n} t^{2} N_{m}^{2}
$$

$$
27\left|\begin{array}{ccc}
V_{n} & V_{n+m} & V_{n+2 m} \\
V_{n+m} & V_{n+2 m} & V_{n+3 m} \\
V_{n+2 m} & V_{n+3 m} & V_{n+4 m}
\end{array}\right|=-R^{n}(r s+t) N_{m}^{2}
$$

$$
27\left|\begin{array}{ccc}
U_{n} & U_{n+m} & U_{n+2 m} \\
U_{n+m} & U_{n+2 m} & U_{n+3 m} \\
U_{n+2 m} & U_{n+3 m} & U_{n+4 m}
\end{array}\right|=-R^{n} N_{m}^{2}
$$

$$
N_{m}=3\left|\begin{array}{cc}
V_{m} & U_{m} \\
V_{2 m} & U_{2 m}
\end{array}\right|=\left(V_{m}+r U_{m}\right)^{3}-r U_{m}\left(V_{m}+r U_{m}\right)^{2}-s U_{m}^{2}\left(V_{m}+r U_{m}\right)-t U_{m}^{3}
$$

Let

$$
P_{m}=a_{1}^{m}+a_{2}^{m}+a_{3}^{m}, \quad Q_{m}=a_{1}^{m} a_{2}^{m}+a_{2}^{m} a_{3}^{m}+a_{3}^{m} a_{1}^{m}, \quad R_{m}=a_{1}^{m} a_{2}^{m} a_{3}^{m}=R^{m}
$$

From (2.1) and (2.7), we have

$$
\begin{equation*}
g Q_{m}=3 W_{m}^{2}+2 r V_{m} U_{m}+\left(2 r^{2}+4 s\right) U_{m} W_{m}-s V_{m}^{2}-(s r+3 t) U_{m} V_{m}+\left(s^{2}-2 t r\right) U_{m}^{2} \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
27 R_{m}=W_{m}^{3}+t V_{m}^{3}+t^{2} U_{m}^{3}-(3 t+r s) W_{m} V_{m} U_{m}+r W_{m}^{2} V_{m}-s V_{m}^{2} W_{m} \tag{2.11}
\end{equation*}
$$

$$
+\left(2 s+r^{2}\right) W_{m}^{2} U_{m}+\left(s^{2}-2 r t\right) W_{m} U_{m}^{2}+t r V_{m}^{2} U_{m}-t s V_{m} U_{m}^{2}
$$

If

$$
\epsilon_{m}=\left|\begin{array}{ccc}
1 & a_{1}^{m} & a_{1}^{2 m} \\
1 & a_{2}^{m} & a_{2}^{2 m} \\
1 & a_{3}^{m} & a_{3}^{2 m}
\end{array}\right|
$$

and $E_{m}=\epsilon_{m}^{2}$, then

$$
\begin{equation*}
27 \epsilon_{m}=-27 R^{2 m} \epsilon_{-m}=\delta N_{m} \tag{2.14}
\end{equation*}
$$

and
(2.15)

$$
3^{6} E_{m}=\Delta N_{m}^{2}
$$

It should be noted that

$$
\begin{equation*}
E_{m}=P_{m}^{2} Q_{m}^{2}+18 P_{m} Q_{m} R_{m}-4 Q_{m}^{3}-4 P_{m}^{3} R_{m}-27 R_{m}^{2} \tag{2.16}
\end{equation*}
$$

and

$$
\Delta=r^{2} s^{2}-18 r s t+4 s^{3}-4 r^{3} t-27 t^{2}
$$

If

$$
F(x, y)=x^{3}-r x^{2} y-s x y^{2}-t y^{3}
$$

we see from (2.14) and (2.5), that

$$
R^{m} F\left(V_{m}+r U_{m}, U_{m}\right)=F\left\{\left(t U_{m}^{2}-r W_{m} U_{m}-W_{m} V_{m}\right) / 3,\left(-W_{m} U_{m}+V_{m}^{2}+r U_{m} V_{m}-s U_{m}^{2}\right) / 3\right\}
$$

If W_{1}, V_{1}, U_{1} are selected such that $W_{1}=3 a, V_{1}=3 b, U_{1}=3 c$, where a, b, c are integers and $a+\rho_{1} b+\rho_{1}^{2} c$ is a unit of the cubic field generated by adjoining ρ_{1} to the rationals, we can obtain an infinitude of integer solutions of the Diophantine equation

$$
F(x, y)=F(z, w) .
$$

If we define
then (Bell [1])

$$
Z_{n}=\frac{1}{\delta}\left|\begin{array}{lll}
1 & \rho_{1} & \rho_{1}^{n} \\
1 & \rho_{2} & \rho_{2}^{n} \\
1 & \rho_{3} & \rho_{3}^{n}
\end{array}\right|
$$

$$
\rho^{n}=\left(Z_{n+2}-r Z_{n+1}-s Z_{n}\right)+\left(Z_{n+1}-r Z_{n}\right) \rho+Z_{n} \rho^{2}
$$

where $\rho=\rho_{1}, \rho_{2}, \rho_{3}$. Using this result together with (2.1), we obtain

$$
\begin{gather*}
3^{m-1} W_{n m}=\sum_{i, j} \frac{m!}{i!j!(m-i-j)!}\left(Z_{2 j+i+2}-r Z_{2 j+i+1}-s Z_{2 j+1}\right) W_{n}^{m-i-j} V_{n}^{i} U_{n}^{j} \tag{2.17}\\
3^{m-1} V_{n m}=\sum_{i, j} \frac{m!}{i!j!(m-i-j)!}\left(Z_{2 j+i+1}-r Z_{2 j+1}\right) W_{n}^{m-i-j} V_{n}^{i} U_{n}^{j} \\
3^{m-1} U_{n m}=\sum_{i, j} \frac{m!}{i!j!(m-i-j)!} Z_{2 j+i} W_{n}^{m-i-j} V_{n}^{i} U_{n}^{j}
\end{gather*}
$$

where the sum is taken over integers $i, j \geqslant 0$ such that $0 \leqslant i+j \leqslant m$.
Finally, it should be noted that for a fixed value of n, each of $W_{n+k m}, V_{n+k m}, U_{n+k m}$ can be represented as a linear combination of the $k^{\text {th }}$ powers of the roots of the equation

$$
x^{3}=P_{m} x^{2}-Q_{m} x+R_{m}
$$

consequently, we have

$$
\begin{align*}
& W_{n+(k+3) m}=P_{m} W_{n+(k+2) m}-Q_{m} W_{n+(k+1) m}+R_{m} W_{n+k m}, \tag{2.18}\\
& V_{n+(k+3) m}=P_{m} V_{n+(k+2) m}-Q_{m} V_{n+(k+1) m}+R_{m} V_{n+k m} . \\
& U_{n+(k+3) m}=P_{m} U_{n+(k+2) m}-Q_{m} U_{n+(k+1) m}+R_{m} U_{n+k m} .
\end{align*}
$$

The identities (2.1), (2.2), (2.6), (2.7), (2.9), (2.17), (2.18) are analogous to Lucas' important identities (7), (49), (51), (46), (32) and (33), (49), and (13), respectively.

3. PRELIMINARY RESULTS

We will now show how to obtain values for $r, s, t, W_{1}, V_{1}, U_{1}$ in such a way that W_{n}, V_{n}, U_{n} are integers for any $n \in N$. We require two lemmas.
Lemma 1. If W_{n}, V_{n}, U_{n} are integers for all $n \in N$, then P, Q, R are integers and one of the following is true.
(i) $3 \mid\left(W_{1}, V_{1}, U_{1}\right)^{\dagger}$
(ii) $3\left|W_{1}, 3 \backslash U_{1}, V_{1} \equiv-r U_{1}(\bmod 3), 3\right| t$, and $3 \mid s$
(iii) $3\left|W_{1}, 3 \backslash U_{1}, V_{1} \equiv r U_{1}(\bmod 3), 3\right| t$ and $r^{2}+s \equiv 0(\bmod 3)$
(i.i) $3 \nmid W_{1}, 3 \mid V_{1}, 3 \nmid U_{1}, W_{1} \equiv-U_{1}(\bmod 3), s \equiv 1(\bmod 3)$, and $t \equiv-r(\bmod 3)$
(v) $3 \nmid W_{1} V_{1} U_{1}, W_{1} \equiv U_{1}(\bmod 3), V_{1} \equiv t U_{1}(\bmod 3), 3|\mathrm{~s}, 3| r$, and $3 \mid t$

Proof. Since W_{2}, V_{2}, U_{2} are integers, it follows from (2.3) that one of the cases (i), (ii), (iii), (iv) or (v) must be true. In each of these cases, we see that

$$
r V_{1}+\left(r^{2}+2 s\right) U_{1} \equiv 0(\bmod 3)
$$

hence, P is an integer.
Now, from (2.18) and the fact that $V_{O}=U_{O}=0$, we have

$$
\begin{aligned}
& V_{3}=P V_{2}-Q V_{1} \\
& U_{3}=P U_{2}-Q U_{1}
\end{aligned}
$$

thus, $Q V_{1}$ and $Q U_{1}$ are both integers. Since $9 Q$ is an integer, we see that Q is an integer if $3 \nmid V_{1}$ or $3 \nmid U_{1}$. If $3 \mid\left(V_{1}, U_{1}\right)$, then it is clear from (2.11) that Q is an integer. Using the equations

$$
V_{4}=P V_{3}-Q V_{2}+R V_{1}, \quad U_{4}=P U_{3}-Q U_{2}+R U_{1}
$$

and (2.7), we can show that R must also be an integer.
Lemma 2. If the conditions of (i) of Lemma 1 are true, Q and R are integers.
If the conditions of (ii) hold, Q and R are integers if and only if $g \mid t$.
If the conditions of (iii) hold, Q and R are integers if and only if $t \equiv r\left(s-2 r^{2}\right)(\bmod 9)$.
If the conditions of (iv) hold, Q and R are integers if and only if $s \equiv 1-t r-r^{2}(\bmod 9)$.
If the conditions of (v) hold, Q and R are integers if and only if $s \equiv t^{2}-1-\operatorname{tr}(\bmod 9)$.
Proof. The proof of the first statement of the lemma is clear from Eqs. (2.11) and (2.7). We show how the other statements can be proved by demonstrating the truth of the fourth statement. (The proofs of the others are similar.)
We write

$$
W_{1}=-U_{1}+3 L, \quad V_{1}=3 K,
$$

where $L . K$ are integers. Substituting these values for W_{1} and V_{1} in (2.11), we get

$$
g Q \equiv 2 U_{1}^{2}\left[1-s-t r-r^{2}\right](\bmod 9)
$$

Hence, Q is an integer if and only if

$$
s \equiv 1-t r-r^{2}(\bmod 9)
$$

fIf x, y, z, \cdots are rational integers, we write as usual $x \mid y$ for x divides $y, x \nmid y$ for x does not divide y, and (x, y, z, \cdots) for the greatest common divisor of x, y, z, \cdots. We also write $y^{n} \|_{x}$ to indicate that $\left.y^{n}\right|_{x}$ and $y^{n+1} \nmid x$.

Assuming that Q is an integer and repeating the above method using (2.7), we get

$$
27 R \equiv\left[-1+t^{2}+2 s+r^{2}-s^{2}+2 r t\right] U_{1}^{3}(\bmod 27)
$$

Thus,

$$
3 R \equiv((t+r) / 3-(s-1) / 3)((t+r) / 3+(s-1) / 3) U_{1}^{3}(\bmod 3) .
$$

Since $(s-1) / 3 \equiv r(t+r) / 3$ and $3 \nmid r$, we see that R is an integer if Q is.
The answer to the problem of this section is given as
Theorem 1. W_{n}, V_{n}, U_{n} are integers for any $n \in N$ if and only if one of the following is true.
(a) $3 \mid\left(W_{1}, V_{1}, U_{1}\right)$
(b) $3\left|w_{1}, 3 \backslash U_{1}, V_{1} \equiv-r U_{1}(\bmod 3), 3\right| s,\left.9\right|_{t}$
(c) $3 \mid W_{1}, 3 \backslash U_{1}, V_{1} \equiv r U_{1}(\bmod 3), 3{ }_{s}, r^{2}+s \equiv 0(\bmod 3), t \equiv r\left(s-2 r^{2}\right)(\bmod 9)$
(d) $3 \backslash W_{1}, 3 \mid V_{1}, 3 \backslash U_{1}, W_{1} \equiv U_{1}(\bmod 3), s \equiv 1(\bmod 3), t \equiv-r(\bmod 3), s \equiv 1-t r-r^{2}(\bmod 9)$
(e) $3 \backslash W_{1} V_{1} U_{1}, W_{1} \equiv U_{1}(\bmod 3), V_{1} \equiv t U_{1}(\bmod 3), 3|s, 3| r, 3 \nmid t, s \equiv t^{2}-1-t r(\bmod 9)$.

Proof. By Lemmas 1 and 2, one of the above conditions is necessary in order for W_{n}, V_{n}, U_{n} to be integers for any $n \in N$. To show sufficiency of the conditions, we note that in each case $W_{2}, V_{2}, U_{2}, P, Q, R$ are integers. The fact that W_{n}, V_{n}, U_{n} are integers for any $n \in N$ follows by induction on (2.18).
Corollary. Let $n \in N$.
If the conditions of (a) are true,

$$
W_{n} \equiv V_{n} \equiv U_{n} \equiv 0(\bmod 3)
$$

If the coriditions of (b) hold,

$$
W_{n} \equiv 0, \quad V_{n} \equiv-r U_{n}(\bmod 3) .
$$

If the conditions of (c) hold,

$$
W_{n} \equiv 0, \quad V_{n} \equiv r U_{n}(\bmod 3)
$$

If the conditions of (d) hold,

$$
W_{n} \equiv-U_{n}, \quad V_{n} \equiv 0(\bmod 3)
$$

If the conditions of (e) hold,

$$
W_{n} \equiv U_{n}, \quad V_{n} \equiv t U_{n}(\bmod 3)
$$

Proof. These results are easily verified for $n=2$. The results for general $n \in N$ follow by using induction on (2.18).
For the sake of brevity, we shall say that the functions W_{n}, V_{n}, U_{n} are given by (a), (b), (c), (d), or (e) if $W_{1}, V_{1}, U_{1}, r, s, t$ obey the conditions of the cases (a), (b), (c), (d), or (e) above. From this point on, we consider only those functions W_{n}, V_{n}, U_{n} which are given by one of these cases.
4. CONGRUENCE PROPERTIES MODULO 3

Since $3 \mid\left(W_{n}, V_{n}, U_{n}\right)$ for W_{n}, V_{n}, U_{n} given by (a), we will confine ourselves here to an investigation of the congruence properties $(\bmod 3)$ of W_{n}, V_{n}, U_{n} when they are given by (b), (c), (d) or (e). In each of these cases, $g \mid \Delta$ and we let $H=\Delta / 9$. From the corollary to Theorem 1 , we see that it is sufficient to discuss U_{n} only.

We define μ to be the least positive integer such that

$$
U_{i} \equiv U_{i+k \mu}(\bmod 3)
$$

for all $i, k \in N$. We further define

$$
B=\left\{x_{1}, x_{2}, \cdots, x_{\mu}\right\}
$$

where $U_{i} \equiv U_{1} X_{i}(\bmod 3)$.
Lemma 3. For W_{n}, V_{n}, U_{n} given by (b), (c), (d) or (e), μ and B are determined from the following results. Case (i) $3\left\langle P_{r}\right.$. The values of $\mu, R(\bmod 3), B$ are functions of the values of H and $Q(\bmod 3)$. These values $(\bmod 3)$ are given in Table 1.

Table 1

H	Q	μ	R	B
1	0,1	2	0	$\{1,(0+1) P\}$
1	-1	2	P	$\{1,0\}$
-1	1	4	P	$\{1,0,-1,0\}$
-1	$0,-1$	4,8	$P(1+Q)$	$\{1,0-1) P,-1,0,-1,-(0-1) P, 1,0\}$
0	P	6	$P-1$	$\{1,1,0,-1,-1,0\}$
0	$-P$	3	$P+1$	$\{1,-1,0\}$

Case (ii). $3 \nmid P, 3 \mid r$
In this case, $\mu=2, R \equiv P Q(Q-1)(\bmod 3)$, and $B=\{1, P+P Q\}$.
Case (iii). $3 \mid P$
In this case, $Q \equiv-H(\bmod 3)$ and the value of R is independent of Q and H. The values of μ and B are given in Table 2.

Table 2

H	Q	R	μ	B
0	0	$-F$	6	$\{1, F, 0, F,-1,0\}$
-1	1	$F \equiv 0$	4	$\{1,0,-1,0\}$
-1	1	$F \not \equiv 0$	8	$\{1, F,-1,0,-1,-F, 1,0\}$
1	-1	0	2	$\{1, F\}$

Here

$$
\begin{array}{llll}
F=\left(-W_{1}+s U_{1}\right) / 3 & \text { for } & W_{n}, V_{n}, U_{n} & \text { given by (b), } \\
F=\left(-W_{1}+r V_{1}+\left(t r-3-r^{2}\right) U_{1}\right) / 3 & \text { for } & W_{n}, V_{n}, U_{n} & \text { given by (c), } \\
F=\left(-W_{1}+r V_{1}-s U_{1}\right) / 3 & \text { for } & W_{n}, V_{n}, U_{n} & \text { given by (d), }
\end{array}
$$

and

$$
F=\left(-W_{1}-t V_{1}+(s+2) U_{1}\right) / 3 \quad \text { for } \quad W_{n}, V_{n}, U_{n} \text { given by (e). }
$$

Proof. For W_{n}, V_{n}, U_{n} given by (b), put
$W_{1}=3 L, \quad V_{1}=-r U_{1}+3 K, \quad a=s / 3, \quad b=r t / g, \quad A_{1}=L+r K+a U_{1}, A_{2}=L, \quad A_{3}=L+a U_{1}$.
Then it can be shown by substitution into (2.10), (2.11), (2.7), that

$$
\begin{gathered}
P \equiv A_{1}+A_{2}+A_{3}, \quad Q \equiv A_{1} A_{2}+A_{2} A_{3}+A_{3} A_{1}+b, \quad R \equiv A_{1} A_{2} A_{3}+b A_{1} \\
A_{2} A_{3} \equiv\left(A_{2}+A_{3}\right)^{2}-\left(A_{2}-A_{3}\right)^{2} \equiv\left(A_{2}+A_{3}\right)^{2}-a^{2}(\bmod 3) .
\end{gathered}
$$

Also, if $3 \backslash r, H \equiv a^{2}-b(\bmod 3)$ and if $3 \mid r, H \equiv 0(\bmod 3)$. Hence, if $3 \backslash r$,

$$
\begin{gathered}
Q \equiv P\left(A_{2}+A_{3}\right)-H(\bmod 3) \\
R \equiv \begin{cases}P(Q-H)(Q+H-1)(\bmod 3) & \text { when } 3 \backslash P \\
\left(A_{2}+A_{3}\right)(H-1)(\bmod 3) & \text { when } 3 \mid P,\end{cases} \\
U_{2} \equiv U_{1}\left(A_{2}+A_{3}\right) \equiv U_{1}(P Q+P H) \text { when } 3 \nmid P .
\end{gathered}
$$

If $3 \mid r$,

$$
\begin{gathered}
P \equiv 2 a U_{1} \quad(\bmod 3) \\
Q \equiv P\left(A_{2}+A_{3}\right)-a^{2} \quad(\bmod 3) \\
R \equiv\left\{\begin{array}{lll}
P Q(Q-1) & (\bmod 3) & \text { when } \\
-\left(A_{2}+A_{3}\right) & (\bmod 3) & \text { when } 3 \mid P
\end{array}\right. \\
U_{2} \equiv\left(A_{2}+A_{3}\right) U_{1} \equiv P(Q+1) U_{1} \text { when } 3 \nmid P .
\end{gathered}
$$

The proof of the lemma for W_{n}, V_{n}, U_{n} given by (b) follows by using induction on (2.18).
[APR.

For (c), put

$$
\begin{gathered}
W_{1}=3 L, \quad V_{1}=r U_{1}+3 K, \quad a=r t / 3-1, \quad b=r\left(t-r\left(s-2 r^{2}\right)\right) / 9, \quad A_{1}=L+(a+1) U_{1} \\
A_{2}=L-r K, \quad A_{3}=L+2 r K+a U_{1} .
\end{gathered}
$$

Then

$$
\begin{gathered}
H \equiv a^{2}-b, \quad P \equiv A_{1}+A_{2}+A_{3}, \quad Q \equiv A_{1} A_{2}+A_{2} A_{3}+A_{3} A_{1}+b \\
R \equiv A_{1} A_{2} A_{3}+b A_{1}, \quad\left(A_{2}-A_{3}\right)^{2} \equiv a^{2}, \quad A_{2} A_{3} \equiv\left(A_{2}+A_{3}\right)^{2}-a^{2}(\bmod 3)
\end{gathered}
$$

For (d), put

$$
\begin{gathered}
W_{1}=U_{1}+3 L, \quad V_{1}=3 K, \quad a=r K, \quad b=r(t+s r) / g, \quad A_{1}=L+r K+U_{1}\left(r^{2}-1\right) / 3, \\
A_{2}=L+\sqrt{s} K+U_{1}(s-1) / 3, \quad A_{3}=L-\sqrt{s} K+U_{1}(s-1) / 3 .
\end{gathered}
$$

Then

$$
\begin{gathered}
H \equiv(a-P)^{2}-b, \quad P \equiv A_{1}+A_{2}+A_{3}, \quad Q \equiv A_{1} A_{2}+A_{1} A_{3}+A_{2} A_{3}+b \\
R \equiv A_{1} A_{2} A_{3}-b\left(a+A_{2}+A_{3}\right), \quad\left(A_{2}-A_{3}\right)^{2} \equiv a^{2}, A_{2} A_{3} \equiv\left(A_{2}+A_{3}\right)^{2}-a^{2} \quad(\bmod 3) .
\end{gathered}
$$

For (e), put

$$
\begin{gathered}
V_{1}=t U_{1}+3 K, \quad W_{1}=U_{1}+3 L, \quad A_{1}=L+t K+U_{1}\left(1+2 t^{2}\right) / 3, \\
A_{2}=L+\beta_{1} K+\beta_{1} U_{1} r / 3, \quad C=L+\beta_{2} K+\beta_{2} U_{1} r / 3,
\end{gathered}
$$

where β_{1}, β_{2} are the zeros of $x^{2}+(t-r) x+1$. Then $H \equiv 0, P \equiv A_{1}+A_{2}+A_{3}$.

$$
Q \equiv A_{1} A_{2}+A_{3} A_{1}+A_{2} A_{3}, \quad R \equiv A_{1} A_{2} A_{3}, \quad\left(A_{2}-A_{3}\right)^{2} \equiv 0, \quad A_{2} A_{3} \equiv\left(A_{2}+A_{3}\right)^{2} \quad(\bmod 3) .
$$

The remainder of the proof of this lemma for W_{n}, V_{n}, U_{n} given by (c), (d), or (e) can now be obtained in the same way as that for W_{n}, V_{n}, U_{n} given by (b).
Corollary. If $n \in N, 3 \mid U_{n}$ if and only if $\psi \mid n$, where ψ is the least positive integer value for m such that $3 \mid U_{m}$. From the statement of Lemma 3 , it is clear that $\psi=\mu, \mu / 2$ or no value for ψ exists.

In the statement of Lemma 3, we have neglected the case for which $3 \backslash \operatorname{Pr}, 3 \mid Q$ and $3 \mid H$. In this case, it can be shown that μ does not exist. By the definition of W_{n}, V_{n}, U_{n}, we exclude this case; hence, we may not have values of $r, s, t, W_{1}, V_{1}, U_{1}$ such that $3 X \operatorname{Pr}, 3|F, 27| \Delta$ for W_{n}, V_{n}, U_{n} given by (b) or (c) or values of r, s, t, W_{1}, V_{1}, U_{1} such that $3 \backslash P, 3|(F+P), 27| \Delta$ for W_{n}, V_{n}, U_{n} given by (d).
We have now found the conditions on $r, s, t, W_{1}, V_{1}, U_{1}$ in order that the functions W_{n}, V_{n}, U_{n} satisfy the requirements (1) and (3) of Section 1. We give the conditions for $(P, Q, R)=1((2)$ of Section 1$)$ in Section 5.

5. FURTHER RESTRICTIONS ON $r, s, t, W_{1}, V_{1}, U_{1}$

It is not immediately clear how to select $r, s, t, W_{1}, V_{1}, U_{1}$ In order that $(P, Q, R)=1$. We show how such selections may be made in
Theorem 2. Let $3 G=\left(2 r^{2}+6 s\right) V_{1}+\left(2 r^{3}+7 r s+9 t\right) U_{1}$.

1. If W_{n}, V_{n}, U_{n} are given by (a), $(P, Q, R)=1$ if and only if $\left(W_{1}, V_{1}, U_{1}\right)=3$ and $(P, G, \Delta)=2^{\alpha_{y y} \beta}$, where $a>0$ only if $2 \chi(s+r)\left(V_{1}+U_{1}\right)$ and $\beta>0$ only if none of the following is true.
(i) $3 \mid \cdot r$ and $W_{1}+t V_{1}+t^{2} U_{1} \equiv 0(\bmod 9)$
(ii) $3 \backslash r, s \equiv 1(\bmod 3)$, and $W_{1}+t U_{1} \equiv 0(\bmod 9)$
(iii) $3\langle r, 3| s$, and $W_{1}\left(W_{1}+r V_{1}+U_{1}\right) \equiv 0(\bmod 27)$
(iv) $3 \chi_{r}, s \equiv-1(\bmod 3)$, and $g \mid w_{1}$.
2. If W_{n}, V_{n}, U_{n} are given by (b), (c), (d), or (e), then ($\left.P, Q, R\right)=1$ if and only if $\left(W_{1}, V_{1}, U_{1}\right)=1$ and $(P, G, H)=2^{\alpha} 3^{\gamma}$, where $a>0$ only if $2 \nmid(s+r)\left(V_{1}+U_{1}\right)$ and $\gamma>0$ only if 3$\} F$.
Proof. We first prove the necessity of the conditions of the theorem.
If $p(\neq 3)$ is a prime and $p \mid\left(W_{1}, V_{1}, U_{1}\right)$, then it is clear from (2.10), (2.11), and (2.7) that $p \mid(P, Q, R)$. If $g \mid\left(W_{1}, V_{1}, U_{1}\right)$, then $3 \mid(P, Q, R)$. Hence, if $(P, Q, R)=1,\left(W_{1}, V_{1}, U_{1}\right) \|_{3}$.
Now, suppose that $p(\neq 3)$ is a prime divisor of (P, G, Δ). Since

$$
3 W_{1} \equiv-r V_{1}-\left(r^{2}+2 s\right) U_{1}(\bmod p)
$$

we have

$$
-270 \equiv\left(r^{2}+3 s\right) V_{1}^{2}+\left(2 r^{3}+7 r s+9 t\right) U_{1} V_{1}+\left(r^{4}+4 s r^{2}+6 t r+s^{2}\right) U_{1}^{2}(\bmod p) .
$$

Since

$$
\begin{equation*}
-3 \Delta=\left(2 r^{3}+7 r s+9 t\right)^{2}-4\left(r^{2}+3 s\right)\left(r^{4}+4 s r^{2}+6 t r+s^{2}\right) \tag{5.1}
\end{equation*}
$$

we see that

$$
27 \cdot 4 \cdot\left(r^{2}+3 s\right) Q \equiv 9 G^{2}(\bmod p)
$$

If $p \nmid 2\left(r^{2}+3 s\right)$, then $p \mid Q$. If $p \mid\left(r^{2}+3 s\right)$, then, from (5.1$), p \mid\left(2 r^{3}+7 r s+9 t\right)$. As a consequence of these two facts, we deduce that $p \mid(r s+9 t)$ and $\left.p\right|^{\prime}\left(3 t r-s^{2}\right)$; thus, $p \mid\left(r^{4}+4 s r^{2}+6 t r+s^{2}\right)$ and $p \mid Q$. Combining (2.15) and (2.16), we get

$$
27^{2}\left(P^{2} Q^{2}+18 P Q R-4 Q^{3}-4 P^{3} R-27 R^{2}\right)=\Delta N_{1}^{2} ;
$$

consequently, if $p \mid(Q, P, \Delta)$ and $p \neq 3$, then $p \mid R$. Thus, if $(P, Q, R)=1$, then $(P, G, \Delta)=2^{\alpha} 3^{\beta},\left((P, G, H)=2^{\alpha} 3^{\gamma}\right)$. If $2 \mid(P, G, \Delta)$ and $(P, Q, R)=1$, then $2 \nmid Q . Q$ is odd if and only if $(s+q)\left(V_{1}+U_{1}\right)$ is. If $3 \mid(P, G, \Delta)$ (or $\left.3 \mid(P, G, H)\right)$ and $(P, Q, R)=1$, then 3$\}(Q, R)$. We will show the conditions under which $3 V(Q, R)$ for part 1 of the theorem only. The conditions for part 2 are quite easy to obtain from results used in the proof of Lemma 3.
Since $3 \mid P$ and $3 \mid \Delta$, we have

$$
r V_{1} / 3 \equiv-\left(r^{2}+2 s\right) U_{1} / 3 \quad(\bmod 3) \quad \text { and } \quad r^{2} s^{2}+s \equiv r t(\bmod 3) .
$$

We now deal with four cases.
(i) $3 \mid r$. If $3 \mid r$, then $3 \mid s$ and $3 \mid Q$. Hence $3 \backslash(Q, R)$ if and only if 3$\}\left(W_{1} / 3+t V_{1} / 3+t^{2} U_{1} / 3\right.$.)
(ii) $\frac{3 \backslash r, s \equiv 1(\bmod 3)}{3 \mid \operatorname{La}}$. Here we have $9 \mid V_{1}$ and $t r \equiv-1(\bmod 3) ;$ thus, $s^{2}-2 t r \equiv 0(\bmod 3)$ and $3 \mid Q$. Hence, $3 \backslash(Q, R)$ if and only if $3 X\left(W_{1} / 3+t U_{1} / 3\right)$.
(iii) $3 \backslash r_{2}, 3 \mid \underline{s}$. We must have $3 \mid t$ and $3 \mid Q$. (R, Q) is not divisible by 3 if and only if $g X_{W_{1}}\left(W_{1} / 3+r V_{1} / 3+U_{1} / 3\right)$.
(iv) $\frac{3 \nmid r, s \equiv-1}{3 \nmid W_{1} / 3}(\bmod 3)$. Once more, we get $3 \mid t$. Also $U_{1} \equiv-V_{1}(\bmod 9)$; hence $3 \mid Q$. $3 \backslash(R, Q)$ if and only if

We now show the sufficiency of the conditions. Let $p(\neq 3)$ be a prime such $p \mid(P, Q, R)$ and $p \nmid \Delta$. Put $T=V_{1}+r U_{1}$. Since $p \mid E_{1}$ and $p \nmid \Delta$, we must have $p \mid N_{1}$ and

$$
\begin{equation*}
T^{3}-r T^{2} U_{1}-s T U_{1}^{2}-t U_{1}^{3} \equiv 0(\bmod p) \tag{5.2}
\end{equation*}
$$

Also

$$
3 W_{1} \equiv-r T-2 s U_{1}(\bmod p) \text { and } p \mid 270
$$

hence,
(5.3) $\quad T^{2}\left(-r^{2}-3 s\right)+U_{1} T(-s r-9 t)+U_{1}^{2}\left(-s^{2}+3 t r\right) \equiv 0(\bmod p)$.

If $p \mid U_{1}$, then $p \mid V_{1}$ and $p \mid W_{1}$. Suppose $p \nmid U_{1}$; then

$$
\left|\begin{array}{ccc}
-9 t-r s & -3 s-r^{2} & 0 \\
-s & -r & 1 \\
3 r t-s^{2} & -9 t-r s & -3 s-r^{2}
\end{array}\right| T U_{1}^{-1}+\left|\begin{array}{ccc}
-3 r t-s^{2} & -3 s-r^{2} & 0 \\
-t & -r & 1 \\
0 & -9 t-r s & -3 s-r^{2}
\end{array}\right| \equiv 0(\bmod p)
$$

Evaluating the determinants, we have

$$
-3 \Delta T U_{1}^{-1}+r \Delta \equiv 0(\bmod p)
$$

and, consequently, $T \equiv 3^{-1} r U_{1}(\bmod p)$. Putting this result into (5.2) and (5.3), we get $r^{2}+3 s \equiv 0(\bmod p)$ and $2 r^{3}+9 s r+27 t \equiv 0(\bmod p)$. By (5.1) $p \mid \Delta$, this is a contradiction; thus $p \mid\left(W_{1}, V_{1}, U_{1}\right)$.
If $3 \mid(P, Q, R)$ and $3 \backslash \Delta$, then W_{n}, V_{n}, U_{n} are given by (a) and we discuss two cases. If $3 \mid r$, then $3 \backslash s$ and from (2.10), we must have $g \mid U_{1}$. Using these results in (2.11) and (2.7), we see that $g \mid V_{1}$ and $g \mid w_{1}$. If $3 \mid{ }_{r}$, we obtain from (2.10) the fact that

$$
V_{1} / 3 \equiv-r(1+2 s) U_{1} / 3(\bmod 3) .
$$

Putting this result into (2.11), we deduce

$$
\left(-s-s^{2}+\operatorname{tr}\right)\left(U_{1} / 3\right)^{2} \equiv 0(\bmod 3)
$$

Since $3 \nmid \Delta, 3 \mid U_{1} / 3$ and $3 \mid v_{1} / 3$, from (2.7), we have $3 \mid w_{1} / 3$.
If $p(\neq 3)$ is a prime and $p \mid(P, Q, R, \Delta)$, then

$$
4 \cdot 27\left(r^{2}+2 s\right) Q \equiv g G^{2}(\bmod p)
$$

and $p \mid G$. If $p=2$, then $2 \mid(P, G, \Delta)$ and we have $2 \mid(s+r)\left(U_{1}+V_{1}\right)$.
If $3 \mid(P, Q, R, \Delta)$ and W_{n}, V_{n}, U_{n} are given by (a), it follows from (2.10) that

$$
r V_{1} / 3+\left(r^{2}+2 s\right) U_{1} / 3 \equiv 0(\bmod 3) .
$$

Hence,

$$
G \equiv 2 r\left(r V_{1} / 3+\left(r^{2}+2 s\right) U_{1} / 3\right)+3 r s U_{1} / 3+9 t U_{1} / 3+6 s V_{1} / 3 \equiv 0(\bmod 3)
$$

and $3 \mid(P, G, \Delta)$. By the reasoning given above, one of (i), (ii), (iii), or (iv) must be true. If W_{n}, V_{n}, U_{n} are given by (b), (c), (d), or (e), then by Lemma $3,3 \mid H$, and we have

$$
-4 \cdot 27 \cdot\left(r^{2}+2 s\right) 0 \equiv 9 G^{2}(\bmod 27) ;
$$

hence, $3 \mid(P, G, H)$ and $3 \mid F$.
The values of a, β, γ in Theorem 2 can be bounded. We give these bounds in
Lemma 4. If $(P, Q, R)=1$, then $a<3, \beta<4$, and $\gamma<6$.
Proof. If $B \mid(P, G, \Delta)$, then

$$
-12\left(r^{2}+3 s\right) Q \equiv 9 G^{2}(\bmod 8)
$$

Since $2 \chi\left(r^{2}+3 s\right)$, we have $2 \mid Q$ and it follows that $2 \mid R$.
If $\beta \geqslant 4$,

$$
3 W_{1} / 3+r V_{1} / 3+\left(r^{2}+2 s\right) U_{1} / 3 \equiv 0(\bmod 81)
$$

and

$$
30 \equiv-\left[\left(r^{2}+3 s\right)\left(v_{1} / 3\right)^{2}+\left(2 r^{3}+7 r s+9 t\right)\left(U_{1} / 3\right)\left(V_{1} / 3\right)+3\left(s^{2}-2 r t\right)\left(U_{1} / 3\right)^{2}\right](\bmod 243) .
$$

If $27 x\left(r^{2}+3 s\right)$, then $9 \mid 0$. If $27 \mid\left(r^{2}+3 s\right)$, we have $3|r, 3| s$ and $(r / 3)^{2}+(s / 3) \equiv 0(\bmod 3)$. Since $81 \mid \Delta$, we also have $r / 3 \equiv t(\bmod 3)$. Since

$$
-30 \equiv(7 r s+9 t)\left(U_{1} / 3\right)\left(V_{1} / 3\right)+\left(6 r t+s^{2}\right)\left(U_{1} / 3\right)^{2}(\bmod 27)
$$

and $7 r s+9 t \equiv 6 t r+s^{2} \equiv 0(\bmod 27)$, it follows that $9 \mid Q$. From the facts that $9|Q, 81| \Delta, 27 \mid N_{1}$, and

$$
E_{1}=\Delta\left(N_{1} / 27\right)^{2}
$$

we see that $3 \mid R$.
If $\gamma \geqslant 6$, then $3^{8} \mid-3 \Delta$ and

$$
-4 \cdot 27\left(r^{2}+3 s\right) Q \equiv 9 G^{2}\left(\bmod 3^{8}\right) ;
$$

hence, $3^{5} \mid\left(r^{2}+3 s\right) Q$. It is not difficult to show that $g \mid Q$. Since $3^{\mid} N_{1}$ and $3^{8} \mid \Delta$, we have $3^{10} \mid \Delta N_{1}^{2}$, and consequently, $3 \mid R$.

6. PROPERTIES OF W_{n}, V_{n}, U_{n}

In the following sections, we will be demonstrating several divisibility properties of the W_{n}, V_{n}, U_{n} functions. Most of these results depend upon

The orem 3. If $n \in N,\left(W_{n}, V_{n}, U_{n}\right) 3$.
Proof. Suppose $p(\neq 3)$ is a prime such that $p l\left(W_{2}, V_{2}, U_{2}\right)$. From (2.10), (2.11), (2.7), it is clear that $p\left|P_{2}, p\right| Q_{2}, p \mid R$. Since $P_{2}=P^{2}-2 Q$ and $Q_{2}=Q^{2}-2 R P$, we have $p \mid(P, Q, R)$, which is impossible by definition of W_{n}, V_{n}, U_{n}. If $g \mid\left(W_{2}, V_{2}, U_{2}\right)$, then $3|R, 3| P_{2}, g \mid Q_{2}$; hence, $3 \mid(P, Q, R)$. The theorem is true for $n=1$, 2.

Suppose $n>2$ is the least positive integer such that $p \mid\left(W_{n}, V_{n}, U_{n}\right)$, where $p(\neq 3)$ is a prime. Since $P \mid R$, by (2.18), it follows that

$$
P W_{n-1} \equiv Q W_{n-2}, \quad P V_{n-1} \equiv Q V_{n-2}, P U_{n-1} \equiv Q U_{n-2}(\bmod p)
$$

If $p \mid P$, then $p \nmid Q$; hence, $p \mid\left(W_{n-2}, V_{n-2}, U_{n-2}\right)$, which is impossible by the definition of n. If $p \mid Q$, then
$p \mid\left(W_{n-1}, V_{n-1}, U_{n-1}\right)$, which is also impossible. This enables us to write

$$
W_{n-1} \equiv P^{-1} a W_{n-2}, \quad V_{n-1} \equiv P^{-1} a v_{n-2}, \quad U_{n-1} \equiv P^{-1} Q U_{n-2}(\bmod p),
$$

where $P^{-1} Q \neq 0(\bmod p)$. From (2.2), we see that

$$
W_{n} \equiv P^{-1} Q W_{n-1}, \quad V_{n} \equiv P^{-1} Q V_{n-1}, \quad U_{n} \equiv P^{-1} Q U_{n-1}(\bmod p)
$$

and consequently $p \mid\left(W_{n-1}, V_{n-1}, U_{n-1}\right)$, which is impossible.
Suppose $n>2$ is the least positive integer such that $g \mid\left(W_{n}, V_{n}, U_{n}\right)$. From (2.2), it is evident that

$$
3 \mid\left(w_{n+1}, v_{n+1}, U_{n+1}\right)
$$

If ψ has the same meaning as that assigned to it in the corollary of Lemma 3 , we have $\left.\psi\right|_{n}$ and $\left.\psi\right|_{n}+1$; that is, $\psi=1$. Since $3 \mid W_{n-3}$ and $3 \mid R$, we have

$$
P\left(W_{n-1} / 3\right) \equiv Q\left(W_{n-2} / 3\right)(\bmod 3)
$$

and similar results for V_{n-1} and U_{n-1}. By reasoning similar to that above, we obtain the result that

$$
3 \mid\left(W_{n-1} / 3, V_{n-1} / 3, U_{n-1} / 3\right)
$$

which cannot be.
Corollary. If $n \in N,\left(U_{n}, V_{n}, R\right) \mid 3$.
Proof. If $p(\neq 3)$ is a prime and $p \mid\left(U_{n}, V_{n}, R\right)$, then $p \mid W_{n}$, which contradicts the theorem. If $g \mid\left(U_{n}, V_{n}, R\right)$, then by (2.7), $81 \mid W_{n}^{3}$ and $g \mid W_{n}$, which is also a contradiction.
We have, with the aid of Theorem 3 and Lemma 3, completely characterized all the divisors of $\left(W_{n}, V_{n}, U_{n}\right)$. We will now begin to develop some results concerning $D_{n}=\left(V_{n}, U_{n}\right)$. It will be seen that the divisibility properties of D_{n} are similar to those of Lucas' u_{n} (Carmichael's D_{n}). In fact, we have analogues of Carmichael's theorems I, II, III, IV, VI, X, XII, XIII, XVII (corollary), in Theorem 3 (corollary), Theorem 3, Lemma 3, Theorem 4, Theorem 5 (corollary), Theorem 7, Theorem 8, Theorem 8 (corollary), Theorem 7 (corollary), respectively. We also have the analogues of Corollaries I and II of Carmichael's Theorem VIII as a consequence of Theorem 5 and a result of Ward [9].

Theorem 4. If $n, k \in N$ and $m \mid D_{n}$, then $m \mid D_{k n}$.
Proof. This theorem is true for $k=1$. Suppose it is true for $k=j$.
Since

$$
3 V_{(j+1) n}=V_{n} W_{j n}+W_{n} V_{j n}+s V_{j n} U_{n}+s V_{n} U_{j n}+(r s+t) U_{n} U_{j n}
$$

and

$$
3 U_{(j+1) n}=W_{j n} U_{n}+U_{j n} W_{n}+V_{n} V_{j n}+r U_{j n} V_{n}+r U_{n} V_{j n}+\left(r^{2}+s\right) U_{n} U_{j n}
$$

we have $m \mid D_{(j+1) m}$, when $3 \nmid m$. If $3 \mid m$, then $3 \mid W_{n}$ and $3 \mid W_{j n}$; hence, $3 m\left|3 V_{(j+1) n}, 3 m\right| 3 U_{(j+1) n}$ and $m \mid D_{(j+1) m}$. The theorem is true by induction.
Let D_{ω} be the first term of the sequence

$$
D_{1}, D_{2}, D_{3}, \cdots, D_{k}, \cdots
$$

in which m occurs as a factor. We call $\omega=\omega(m)$ the rank of apparition of n .
Theorem 5. If $n \in N$ and m is a divisor of D_{n}, then $\omega(m) \|_{n}$.
Proof. Suppose $\omega_{k}^{k} n$; then $n=k \omega+j(0<j<\omega)$. From (2.2)

$$
\begin{gathered}
3 V_{n}=V_{j} W_{k} \omega+W_{j} V_{k} \omega+s V_{j} U_{k \omega}+s V_{k \omega} U_{j}+(r s+t) U_{k \omega} U_{j} \\
3 U_{n}=U_{j} W_{k} \omega+W_{j} U_{k \omega}+V_{j} V_{k} \omega+r U_{k} \omega V_{j}+r U_{j} U_{k} \omega+\left(r^{2}+s\right) U_{k} \omega U_{j}
\end{gathered}
$$

If $3 \nmid m, m \mid\left(V_{j} W_{k} \omega, U_{j} W_{k} \omega\right)$. Since $m \mid D_{k} \omega,\left(m, W_{k} \omega\right)=1$ and $m \mid D_{j}$.
If $3 \mid m$, then $3 \mid W_{k} \omega$ and $3 \mid W_{n}$. If ψ is the rank of apparition of 3 , we know that $\psi \mid n$ and $\psi \mid k \omega$; hence,
$\psi \mid j$ and $3 \mid\left(W_{j}, V_{j}, U_{j}\right)$. We now have $3 m \mid\left(V_{j} W_{k} \omega, U_{j} W_{k} \omega\right)$. If $3 \| m$, then $\left(m / 3, W_{k} \omega\right)=1, m / 3 \mid\left(V_{j}, U_{j}\right)$, $3 \mid\left(V_{j}, U_{j}\right)$ and consequently $m \mid D_{j}$. If $3^{\alpha} \| m$ and $a>1$, then $3 \| W_{k} \omega$ and $m \mid D_{j}$.

If ω / n, we can find $j<\omega$ such that $m \mid D_{j}$. This contradicts the definition of ω.
Corollary. If $n, m \in N$, then $D_{(m, n)}=\left(D_{m}, D_{n}\right)$.
Proof. This result follows from the theorem and a result of Ward [9].
Corollary. If m, n are integers and $(m, n)=1, \omega(m n)$ is the least common multiple of $\omega(m)$ and $\omega(n)$.

7. THE LAWS OF REPETITION AND APPARITION

We have defined the rank of apparition of an integer m without having shown whether it exists or, if it does exist, what its value is. We give in this section those values of m for which ω exists and we partially answer the question of the value of ω for these m values. The Law of Repetition describes how $\omega\left(p^{n}\right)$ (p aprime) may be determined once $\omega(p)$ is known. In order to prove the Law of Repetition, we must first give a few preliminary results.
Lemma 5. Suppose $3 \backslash R$ and $3 \mid D_{m}$; then $3 \mid\left(P_{m}, Q_{m}\right)$ if and only if $9 \mid D_{3 m}$. If $3 \backslash \Delta$, then $3 \mid\left(P_{m}, Q_{m}\right)$ if and only if $g \mid D_{m}$.
Proof. If $g \mid D_{k}$, then $3 \mid W_{k}$ and $3 \mid\left(P_{k}, Q_{k}\right)$. If $\Delta \equiv r^{2} s^{2}+s-t r \equiv 0(\bmod 3)$ and $3 \mid\left(P_{m}, Q_{m}\right)$, then

$$
r\left(V_{m} / 3\right)+\left(r^{2}+2 s\right)\left(U_{m} / 3\right) \equiv 0(\bmod 3)
$$

and

$$
-s\left(V_{m} / 3\right)^{2}-s r\left(U_{m} / 3\right)\left(V_{m} / 3\right)+\left(s^{2}-2 t r\right)\left(U_{m} / 3\right)^{2} \equiv 0(\bmod 3)
$$

If $3 \mid r$, then 3$\}_{s}$; hence, if $3\left|U_{m} / 3, g\right| D_{m}$. If $3 \chi_{r}$, then $\left(V_{m} / 3\right) \equiv-r\left(r^{2}+2 s\right) U_{m} / 3(\bmod 3)$; thus,

$$
-\Delta\left(U_{m} / 3\right)^{2} \equiv 0(\bmod 3)
$$

and $g \mid D_{m}$.
If $g \mid D_{3 m}$, we have $3 \mid P_{3 m}$ and $3 \mid Q_{3 m}$. Now

$$
\begin{gathered}
P_{3 m}=P_{m}^{3}-3 Q_{m} P_{m}+3 R_{m} \\
Q_{3 m}=a_{m}^{3}-3 R_{m} P_{m} Q_{m}+3 R_{m}^{2}
\end{gathered}
$$

consequently, $3 \mid\left(P_{m}, Q_{m}\right)$. If $3 \mid\left(P_{m}, Q_{m}\right)$, then since

$$
V_{3 m} / 3=P_{m} V_{2 m} / 3-Q_{m} V_{m} / 3 \equiv 0(\bmod 3)
$$

and

$$
U_{3 m} / 3=P_{m} U_{2 m} / 3-Q_{m} U_{m} / 3 \equiv 0(\bmod 3),
$$

we have $9 \|_{3 m}$.
Lemma 6. Suppose $3 \backslash R, 3 \mid D_{m}$, and $3 \mid \Delta$. If $3 \nmid P_{m}, g \mid D_{2 m}$ if and only if one of the following is true.
(i) $3|s, 3| t, 3 \nmid r, W_{m} \equiv U_{m} \not \equiv 0(\bmod 9)$, and $g \mid V_{m}$.
(ii) $s \equiv 1(\bmod 3), t \equiv-r \equiv 0(\bmod 3), W_{m} \equiv-U_{m} \equiv 0(\bmod 9)$ and $V_{m} \equiv r U_{m}(\bmod 9)$.
(iii) $s \equiv-1(\bmod 3), 3 \mid t, 3 \nmid r$, and $W_{m} \equiv-r V_{m}+U_{m} \equiv 0(\bmod 9)$.

Proof. Since 3$\rangle P_{m}$ and $3 \mid \Delta$, it is clear that $3 \backslash r$.
We show the necessity of one of (i), (ii), or (iii). If $g \mid D_{2 m}$, then

$$
(s r+t)\left(U_{m} / 3\right)^{2}+2 s\left(V_{m} / 3\right)\left(U_{m} / 3\right)+2\left(V_{m} / 3\right)\left(W_{m} / 3\right) \equiv 0(\bmod 3)
$$

and

$$
\left(V_{m} / 3\right)^{2}+2\left(w_{m} / 3\right)\left(U_{m} / 3\right)+2 r\left(U_{m} / 3\right)\left(V_{m} / 3\right)+\left(r^{2}+s\right)\left(U_{m} / 3\right) \equiv 0(\bmod 3)
$$

If $g \mid U_{m}$, then $g \mid V_{m}$ and $3 \mid P_{m}$, which is impossible. If $g \mid V_{m}$, then $3 \mid(r s+t)$ and $\left(r^{2}+s\right) U_{m} \equiv W_{m}(\bmod 9)$. Now since 3$\}(s+1)$, we have $3 \mid s-1$ or $3 \mid s$. If $3 \mid(s-1)$, then $3 \mid\left(r^{2}+2 s\right)$ and $3 \mid P_{m}$. If $3 \mid s$, then $3 \mid t$ and $W_{m} \equiv U_{m} \equiv 0(\bmod 9)$.
If $g \nmid U_{m}$ and $g \nmid V_{m}$, then

$$
\begin{gathered}
W_{m}-(s r+t) V_{m}+s U_{m} \equiv 0(\bmod 9) \\
W_{m}+r V_{m}-\left(1+r^{2}+s\right) U_{m} \equiv 0(\bmod 9)
\end{gathered}
$$

and

$$
r(s+1)^{2} V_{m} \equiv-(s+1) U_{m}(\bmod 9)
$$

If $3 \mid s, r V_{m} \equiv-U_{m}(\bmod 9)$ and $3 \mid P_{m}$. If $s \equiv 1(\bmod 3)$, then $t \equiv-r(\bmod 3), r V_{m} \equiv U_{m} \neq 0(\bmod 9)$ and $W_{m} \equiv-U_{m}(\bmod 9)$. If $s \equiv-1(\bmod 3)$, then $3 \mid t$, and $W_{m} \equiv-r V_{m}+U_{m}(\bmod 9)$.
It is clear that any one of the conditions (i), (ii), or (iii) is sufficient for $g \mid D_{2 m}$.
Theorem 6. If 3$\}^{\prime} R, \psi$ is the rank of apparition of 3 , and $g \nmid D \psi$, then the rank of apparition of 9 is $\sigma \psi$, where the value of σ is given below.
I. $3 \nmid \Delta$.

In this case, W_{n}, V_{n}, U_{n} are given by (a) and the value of σ is a function of the values (modulo 3) of $N_{1} / 27$, Δ, P, Q. The values of σ are given in Table 3.

Table 3

$N_{1} / 27$	Δ	P	Q	σ
0	± 1	P	Q	2
± 1	-1	± 1	± 1	4
± 1	-1	± 1	0	8
± 1	-1	0	0	8
± 1	1	P	0	13

II. $3 \mid \Delta$.

Here $\sigma=2$ if $3 \nmid P_{\psi}$ and one of the following is true.
(i) $3|s, 3| t, 3 \nmid r, W_{\psi} \equiv U_{\psi} \equiv \equiv 0(\bmod 9)$ and $9 \mid V_{\psi}$;
(ii) $s \equiv 1(\bmod 3), t \equiv-r \equiv 0(\bmod 3), W_{\psi} \equiv-U_{\psi} \equiv 0(\bmod 9)$, and $V_{\psi} \equiv r U_{\psi}(\bmod 9)$;
(iii) $s \equiv-1(\bmod 3), 3 \mid t, 3 \nmid r$, and $W_{\psi} \equiv-r V_{\psi}+U_{\psi} \equiv 0(\bmod 9)$.
$\sigma=3$ if $3 \mid P_{\psi}$.
$\sigma=6$ if $3 \nmid P_{\psi}$ and none of (i), (ii), (iii) is true.
Proof. Since $3 \mid D_{\psi}$, we have $27 \mid N_{\psi}$; hence

$$
E_{\psi}=\Delta\left(N_{\psi} / 27\right)^{2}
$$

If $3 \mid \Delta$,

$$
P_{\psi} R_{\psi} \equiv Q_{\psi}\left(Q_{\psi} P_{\psi}^{2}-1\right)(\bmod 3) .
$$

If $3 \mid P_{\psi}$, then $3 \mid Q_{\psi}$ and $g \mid\left(V_{3} \psi, U_{3} \psi\right)$. If $3 \nmid P_{\psi}$, then

$$
R_{\psi} \equiv P_{\psi} Q_{\psi}\left(Q_{\psi}-1\right)(\bmod 3)
$$

thus, $Q_{\psi} \equiv-1(\bmod 3)$ and $R_{\psi} \equiv-P_{\psi}(\bmod 3)$. Since

$$
P_{2 \psi}=P_{\psi}^{2}-2 Q_{\psi} \equiv 0 \quad \text { and } \quad Q_{2 \psi}=Q_{\psi}^{2}-2 R_{\psi} P_{\psi} \equiv 0(\bmod 3)
$$

it follows from Lemma 5 that $g \mid D_{6} \psi$ and $g \nmid D_{3 \psi}$. From Lemma 6 , we see that $g \mid D_{2 \psi}$ if and only if one of (i), (ii) or (iii) is true.

If $3 \backslash \Delta$ and $81 \mid N_{1}$, then $3\left|E_{1}, 3\right|\left(P_{2}, Q_{2}\right)$ and $\sigma=2$.
If $\Delta \equiv-1(\bmod 3)$ and $81 \mid N_{1}$, then

$$
P R \equiv P^{2} Q^{2}-Q+1(\bmod 3) .
$$

Using the formulas

$$
P_{2 k}=P_{k}^{2}-2 Q_{k} \quad \text { and } \quad Q_{2 k}=Q_{k}^{2}-2 P_{k} R_{k}
$$

we see that if $3 \mid P$, then $Q \equiv 1(\bmod 3)$ and $P_{2} \equiv Q_{2} \equiv 1(\bmod 3), Q_{4} \equiv P_{4} \equiv-1(\bmod 3), Q_{8} \equiv P_{8} \equiv 0(\bmod 3)$; consequently, $\sigma=8$. The remaining results for this case are proved in the same way.
If $\Delta \equiv 1(\bmod 3)$ and $81 \nmid N_{1}$, then

$$
P R \equiv P^{2} Q^{2}-Q-1(\bmod 3) .
$$

Using the formulas

$$
\begin{aligned}
& P_{n+3}=P P_{n+2}-Q P_{n+1}+R P_{n} \\
& Q_{n+3}=Q Q_{n+2}-P R Q_{n+1}+R^{2} Q_{n} .
\end{aligned}
$$

we see that if $3 \mid P$, then $Q \equiv-1(\bmod 3)$ and $P_{13} \equiv Q_{13} \equiv 0(\bmod 3)$. If $3 \nmid P$, then $R \equiv F P\left(Q^{2}-Q-1\right)$ and $P_{13} \equiv Q_{13} \equiv 0(\bmod 3)$.

Theorem 7. (Law of Repetition). Let p be a prime. If, for $\lambda>0, p^{\lambda} \neq 3,2$ and $p^{\lambda} \| D_{m}$, then

$$
p^{\alpha+\lambda} \| D_{m \nu p} \alpha, \quad \text { where } \quad(\nu, p)=1
$$

If $p^{\lambda}=2$ and ν is odd, $p^{\alpha+1} \mid D_{m \nu p^{\alpha}}$ and $4 \mid D_{m \nu}$. If $p^{\lambda}=3$ and $3 \nmid R$, then

$$
3^{\alpha+1} \mid D_{m \tau 3^{\alpha-1}} \quad \text { and } \quad g \nmid D_{m \nu}, \text { if } \tau \psi \nu .
$$

Here

$$
\tau=\sigma /(m / \psi, \sigma)
$$

where ψ, σ have the meanings assigned to them in Theorem 6 . If $3 \mid R$, then $3 \| D_{n}$ for any $n \in N$.
Proof. Since p is a divisor of $p!/[i!j!(p-i-j)!]$ when $i, j \neq 0, p$, we have (from (2.17))

$$
\begin{aligned}
& 3^{p-1} V_{m p} \equiv p W_{m}^{p-1} V_{m}\left(\bmod p^{\lambda+2}\right) \\
& 3^{p-1} U_{m p} \equiv p W_{m}^{p-1} U_{m}\left(\bmod p^{\lambda+2}\right)
\end{aligned}
$$

if $p \neq 2$ or if $p=2$ and $\lambda>1$. If $p \neq 3$, then $p \nmid W_{n}$; hence $p^{\lambda+1} \| D_{m p}$. By induction $p^{\lambda+\alpha} \|_{D_{m p^{\alpha}}}$. If

$$
p^{\lambda+\alpha+1} \mid D_{m \mu p^{\alpha}} \text {, then } p^{\lambda+\alpha+1} \mid\left(D_{m p^{\alpha} \mu^{\prime}} D_{m p^{\alpha+1}}\right)=D_{m p^{\alpha}}
$$

which is impossible. If $p=2$ and $\lambda=1,3 V_{2 m} \equiv 3 U_{2 m} \equiv 0(\bmod 4)$; hence, $2^{\alpha+1} \mid D_{2^{\alpha} m}$ and $4 \backslash D_{m \mu}$.
If $3^{\lambda} \| D_{m}$ and $\lambda>1$, then $3 \mid W_{m}$ and $3 \lambda \geqslant \lambda+4,2 \lambda+2 \geqslant \lambda+4$. Using the triplication formulas (2.4), we have

$$
3^{\lambda+3} \mid g V_{3 m} \quad \text { and } \quad 3^{\lambda+3} \mid g U_{3 m}
$$

or $3^{\lambda+1} \mid D_{3 m}$. Also

$$
\begin{aligned}
& 9 V_{3 m} \equiv 3 V_{m} W_{m}^{2}\left(\bmod 3^{\lambda+4}\right) \\
& 9 U_{3 m} \equiv 3 U_{m} W_{m}^{2}\left(\bmod 3^{\lambda+4}\right) .
\end{aligned}
$$

Since $g \nmid W_{m}$,

$$
3^{\lambda+2} \chi D_{3 m} \quad \text { and } \quad 3^{\lambda+1} \| D_{3 m} .
$$

If $3\left|\mid D_{m}\right.$, then $\left.\psi\right| m$ and $g \mid D_{n}$ if and only if $\left.\sigma \psi\right|_{n}$. Since $\left.\sigma \psi\right|_{m \tau}$, we have $9 \mid D_{m \tau}$ and $\left.3^{\alpha+1}\right|_{m \tau 3^{\alpha-1}}$. If $\tau \mid \nu$, then $\sigma \psi \nmid \nu m$ and $g \nmid D_{\nu m}$.
If $3 \mid R$ and $g \mid D_{n}$, then $81 \mid W_{n}^{3}$ or $g \mid W_{n}$, which is impossible.
The Law of Apparition gives those primes for which the rank of apparition exists and also gives us some information concerning the value of the rank of apparition. We first define an auxiliary function y_{n}.

If p is a prime such that $p \nmid 3 N_{1} R$, we define the function y_{n} to be the Lucas function u_{n} of (1.1), where $a_{1}+a_{2} \equiv g(\bmod p), a_{1} a_{2} \equiv h^{3}(\bmod p)$, and

$$
h=r^{2}+3 s, \quad g=2 r^{3}+9 r s+27 t
$$

Theorem 8. (Law of Apparition). If p is a prime such that $p \nmid R$, then ω, the rank of apparition of p, exists. If $p=3$, then $\omega=\psi$. Suppose $p \nmid 3 R$; then $\omega(p) \mid \Phi(p)$, where the value of Φ is given below.
We let $p \equiv q(\bmod 3)$, where $|q|=1$.
If $p \nmid \Delta N_{1}$ and $(\Delta \mid p)=-1$, then $(p-1) \nmid \omega$ and $\Phi(p)=p^{2}-1$.
If $p \backslash \Delta N_{p} h$ and $(\Delta \mid p)=+1$, then $\Phi(p)=p-1$, when $y(p-q) / 3 \equiv 0(\bmod p) ; \Phi(p)=p^{2}+p+1$, when $Y(p-q) / 3 \not \equiv 0(\bmod p)$.
If $p\rangle \Delta N_{1},(\Delta \mid p)=+1$, and $p \mid h$, then $p \equiv 1(\bmod 3)$ and $\Phi(p)=p-1$, when $(g \mid p)_{3}=1 ; \Phi(p)=p^{2}+p+1$, when $(g \mid p)_{3} \neq 1$.

If $p \nmid \Delta$ and $p \mid N_{1}$, then $\Phi(p)=p-1$.
If $p=2$ and $p \mid \Delta$, then $\Phi(p)=4$.
If $p \neq 2, p \mid \Delta$ and $p \nmid N_{1}$, then $p \mid \omega$ and $\Phi(p)=p(p-1)$.
If $p \neq 2, p \mid \Delta$ and $p \mid N_{1}$, then $\Phi(p)=p$, when $p \mid G ; \Phi(p)=p-1$, when $p \nmid G$.
Proof. These results may be deduced without much difficulty from (2.15) and results of Engstrom [5], Ward [8], and Cailler [2]. (See also Duparc [4].)
Corollary. If we define $\Phi\left(p^{n}\right)=p^{n-1} \Phi(p)$ for $p \neq 3, \Phi\left(3^{2}\right)=\sigma \psi, \Phi\left(3^{n}\right)=3^{n-2} \Phi\left(3^{2}\right)$, and $\Phi(m n)$ to be the least common multiple of $\Phi(m)$ and $\Phi(n)$, when $(m, n)=1$, then $\omega(m) \mid \Phi(m)$.
If p is of the form $3 k+1$ and $p \nmid \Delta N_{1} R$, we can sharpen some of the results in the Law of Apparition.
Theorem 9. Let $p(\equiv 1(\bmod 3))$ be a prime such that $p \nmid \Delta N_{1} R$. If $(\Delta \mid p)=-1, \omega \mid\left(p^{2}-1\right) / 3$ if and only if $(R \mid p)_{3}=1$. If $(\Delta \mid p)=+1$ and $y(p-q) / 3 \equiv 0(\bmod p)$, then $\omega \mid\left(p^{2}+p+1\right) / 3$ if and only if $(R \mid p)_{3}=1$. If $(\Delta \mid p)=+1$ and $y(p-q) / 3 \equiv 0(\bmod p), \omega \mid(p-1) / 3$ only if $(R \mid p)_{3}=1$.
Proof. If $(\Delta \mid p)=-1$, then $\left(E_{1} \mid p\right)=-1$ and the polynomial $x^{3}-P_{x}^{2}+Q x-R$ factors modulo p into the product of a linear and irreducible quadratic factor. Let $K=G F\left(p^{2}\right)$ be the splitting field for this polynomial modulo p and let the roots of

$$
\begin{equation*}
x^{3}-P x^{2}-Q x-R=0 \tag{7.1}
\end{equation*}
$$

be θ, ϕ, ψ in K. Then in K

$$
\theta^{p}=\theta, \quad \chi=\phi^{p}, \quad \chi^{p}=\phi, \quad R=\theta \phi \chi=\theta \phi^{p+1}
$$

If $R^{(p-1) / 3} \equiv 1(\bmod p)$, we have
(7.2)

$$
\theta^{(p-1) / 3} \phi^{\left.f p^{2}-1\right) / 3}=1 \quad \text { and } \quad \theta^{\left(p^{2}-1\right) / 3}=\phi^{\left(p^{2}-1\right) / 3}=\phi^{p\left(p^{2}-1\right) / 3}
$$

 that $p \nmid D\left(p^{2}-1\right) / 3$.
If $(\Delta \mid p)=+1$ and $p \nmid y(p-q) / 3$, the polynomial $x^{3}-r x^{2}-s x-t$ is irreducible modulo p; hence, the polynomial $x^{3}-P x^{2}+Q x-R$ is irreducible modulo p. If $K=G F\left(p^{3}\right)$ is the splitting field of this polynomial (modulo p) and θ, ϕ, χ are the roots of (7.1) in K, then

$$
\theta^{p}=\phi, \quad \theta^{p^{2}}=\chi, \quad \theta^{p^{3}}=\theta, \quad R=\theta^{1+p+p^{2}}
$$

If $R^{(p-1) / 3} \equiv 1(\bmod p)$,

$$
\theta^{\left(p^{3}-1\right) / 3}=1 \quad \text { and } \quad \theta^{p\left(p^{2}+p+1\right) / 3}=\theta^{p^{2}\left(p^{2}+p+1\right) / 3}=\theta^{\left(p^{2}+p+1\right) / 3}
$$

If $(\Delta \mid p)=+1$ and $\left.p\right|_{y}(p-q) / 3$, the polynomial $x^{3}-P_{x} 2^{2}+Q x-R$ splits modulo p into the product of three linear factors. It is not difficult to show that if $p \mid D_{(p-1) / 3}$, then $R^{(p-1) / 3} \equiv 1(\bmod p)$.
We have not discussed the functions

$$
B_{n}=\left(W_{n}, V_{n}\right) \quad \text { and } \quad C_{n}=\left(W_{n}, U_{n}\right)
$$

which are somewhat analogous in their divisibility properties to Lucas' V_{n} or Carmichael's S_{n}. The functions B_{n} and C_{n} behave in a rather complicated fashion and in a further paper results concerning these functions will be presented together with other results on the W_{n}, V_{n}, U_{n} functions.

REFERENCES

1. E. T. Bell, "Notes on Recurring Series of the Third Order," Tóhoku Math. Journal, Vol. 24 (1924), pp. 168-184.
2. C. Cailler, "Surles Congruences du Troisième Degré," L'Enseig. Math., Vol. 10 (1908), pp. 474-487.
3. R. D. Carmichael, "On the Numerical Factors of the Arithmetic Forms $a^{n} \pm \beta^{n}$," Annals of Math. (2), Vol. 15 (1913-1914), pp. 30-70.
4. H. J. A. Duparc, "Periodicity Properties of Recurring Sequences II," Indagationes Math., Vol. 16 (1954), pp. 473-485.

5．H．T．Engstrom，＂On Sequences Defined by Linear Recurrence Relations，＂Trans．Amer．Math．Soc．，Vol． 33 （1931），pp．210－218．
6．D．H．Lehmer，＂An Extended Theory of Lucas＇Functions，＂Annals of Math．（2），Vol． 30 （1929），pp．66－ 72.

7．Edouard Lucas，＂Theorie des Fonctions Numeriques Implement Periodiques，＂Amer．J．of Math．，Vol． 1 （1878），pp．184－240，289－321．
8．Morgan Ward，＂The Characteristic Number of a Sequence of Integers Satisfying a Linear Recursion Re－ Iation，＂Trans．Amer．Math．Soc．，Vol． 33 （1931），pp．153－165．
9．Morgan Ward，＂A Note on Divisbility Sequences，＂Bull．Amer．Math．Soc．，Vol． 42 （1936），pp．843－845．
10．H．C．Williams，＂A Generalization of the Lucas Functions，＂unpublished Ph．D．thesis，University of Waterloo，Ontario， 1969.
11．H．C．Williams，＂On a Generalization of the Lucas Functions，＂Acta Arith．，Vol． 20 （1972），pp．33－51．
12．H．C．Williams，＂Fibonacci Numbers Obtained from Pascal＇s Triangle with Generalizations，＂The Fibonacci Quarterly，Vol． 10 （1972），pp．405－412．

大 大 大

PHI AGAIN：A RELATIONSHIP BETWEEN THE GOLDEN RATIO AND THE LIMIT OF A RATIO OF MODIFIED BESSEL FUNCTIONS

HARVEY J．HINDIN

State University of New York，Empire State College－Stony Brook University，Stony Brook，New Y ork 11790

In his study of infinite continued fractions whose partial quotients form a general arithmetic progression， D．H．Lehmer derived a formula for their evaluation in terms of modified Bessel Functions［1］．We have

$$
\begin{equation*}
F(a, b)=a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots=\left[a_{0}, a_{1}, a_{2}, \cdots\right] \tag{1}
\end{equation*}
$$

where $a_{n}=a n+b$ ．It was shown that

$$
\begin{equation*}
F(a, b)=\frac{I_{\dot{\alpha}-1}(2 / a)}{I_{\alpha}(2 / a)}, \tag{2}
\end{equation*}
$$

where $a=b / a$ and I_{α} is the modified Bessel function

$$
\begin{equation*}
I_{\alpha}(z)=i^{-\alpha} J_{\alpha}(i z) \sum_{m=0}^{\infty} \frac{(z / 2)^{\alpha+2 m}}{\Gamma(m+1) \Gamma(a+m+1)} \tag{3}
\end{equation*}
$$

Using（1）and（2）with $c a=2 / a$ and $b=c / 2$ ，we have

$$
\begin{equation*}
F(a, b)=[b, a+b, 2 a+b, \cdots]=\frac{I_{\alpha-1}(c a)}{I_{\alpha}(c a)} . \tag{4}
\end{equation*}
$$

As $a \rightarrow \infty(a \rightarrow 0)$ ，in the limit（Theorem 5 of［1］），
（5）

$$
\lim _{\alpha \rightarrow \infty} \frac{I_{\alpha-1}(c a)}{I_{\alpha}(c a)}=F(0, b)=[b, b, b, \cdots] .
$$

But，for $b=1,(c=2), F(0,1)$ is the positive root of the quadratic equation

$$
\begin{equation*}
1+\frac{1}{x}=x \tag{6}
\end{equation*}
$$

which is represented by the infinite continued fraction expansion $[1,1,1, \cdots]$ ．
［Continued on p．152．］

