PERIODIC LENGTHS OF THE GENERALIZED FIBONACCI SEOUENCE MODULO p

C. C. YALAVIGI AND H. V. KRISHNA
Government College, Mercara India and Manipal Engineering College, Manipal, India

INTRODUCTION

This paper concerns the periodic lengths of the Generalized Fibonacci Sequence modulo p, where p is a prime integer. The GF sequence will be denoted by $H_{n}, n=1,2, \cdots$, for which

$$
\begin{equation*}
H_{1}=P, \quad H_{2}=b P+c Q, \quad H_{n}=b H_{n-1}+c H_{n-2} \quad(n>2) \tag{1}
\end{equation*}
$$

and its periodic length reduced modulo p, i.e., the periodic length of the recurring series

$$
\begin{equation*}
H_{n}(\bmod p), \quad n=1,2, \cdots, \tag{2}
\end{equation*}
$$

will be represented by $k(H, p)$. Clearly for $P=1, Q=0$ the periodic length of the series

$$
\begin{equation*}
U_{1}=1, \quad U_{2}=b, \quad U_{n}=b U_{n-1}+c U_{n-2} \quad(n>2) \tag{3}
\end{equation*}
$$

is given by $k(U, p)$. We prove the following theorems.

2. NATURE OF $k\left(H_{s} p\right)$

The orem a. For primes whose quadratic residue is $b^{2}+4 c$, if $(b, c, P, Q)=1$, then $k(H, p, \|(p-1)$.
Proof. In the known formula,
(4) $\quad H_{n}=\left(1 r^{n}-m s^{n}\right) /(r-s), \quad(r+s=b, \quad r s=-c, \quad 1=P-s Q$ and $m=P-p Q)$, let $\left.r, s=\left(b \pm \sqrt{\left(b^{2}+4 c\right.}\right)\right) / 2$ so that it may be simplified by the use of binomial theorem to obtain

$$
\begin{align*}
2^{n} H_{n}= & \left\{b^{n}(1-m)+\binom{n}{1} b^{n-1} \sqrt{\left(b^{2}+4 c\right)}(1+m)+\binom{n}{2} b^{n-2}\left(\sqrt{\left(b^{2}+4 c\right)}\right)^{2}(1-m)\right. \tag{5}\\
& \left.\left.+\cdots+\binom{n}{n}\left(\sqrt{\left(b^{2}+4 c\right.}\right)\right)^{n}\left(1-(-1)^{n} m\right)\right\} /\left(\sqrt{\left(b^{2}+4 c\right)}\right) .
\end{align*}
$$

Then it is easy to show for $n=p$ and $p+1$ that
(6)

$$
H_{p} \equiv P(\bmod p), \quad H_{p+1} \equiv b P+c Q(\bmod p)
$$

if $\left(b^{2}+4 c\right)^{(p-1) / 2} \equiv 1(\bmod p)$ and $(b, c, P, Q)=1$. Hence the desired result follows.
The orem b. For primes whose quadratic nonresidue is $b^{2}+4 c$, if $(b, c, P, Q)=1$, then $k(H, p) \|\left(p^{2}-1\right)$.
Proof. On using the known formula $H_{n}=P U_{n}+c Q U_{n-1},\left(b^{2}+4 c\right)^{(p-1) / 2} \equiv-1(\bmod p)$ and the following set of congruences, viz.,

$$
\begin{gather*}
U_{p} \equiv-1, \quad U_{p+1} \equiv 0, \quad U_{p+2} \equiv-c \tag{7}\\
U_{2 p+1} \equiv 1, \quad U_{2 p+2} \equiv 0, \quad U_{2 p+2} \equiv(-c)^{2} \\
\vdots \\
U_{p(p-1)+p-2} \equiv 1, \quad U_{p(p-1)+p-1} \equiv 0, \quad U_{p(p-1)+p} \equiv(-c)^{p-1},
\end{gather*}
$$

it is easy to show that
(8)

$$
\begin{gathered}
H_{p+1} \equiv-c Q, \quad H_{p+2} \equiv-c P, \quad H_{p+3} \equiv-c(b P+c Q), \\
H_{2 p+2} \equiv c Q, \quad H_{2 p+3} \equiv(-c)^{2} P, \quad H_{2 p+4} \equiv(-c)^{2} b P+c(c Q), \\
\vdots \\
H_{p(p-1)+p-1} \equiv c Q, \quad H_{p(p-1)+p} \equiv(-c)^{p-1} P, \quad H_{p^{2}+1} \equiv(-c)^{p-1} b P+c(c Q), \\
H_{p(p+1)} \equiv-c Q, \quad H_{p(p+1)+1} \equiv(-c)^{p} P, \quad H_{p(p+1)+2} \equiv(-c)^{p} b P+c(-c Q) .
\end{gathered}
$$

Clearly $(-c)^{p} \equiv-c(\bmod p)$ and (8) shows that $k(H, p) 川\left(p^{2}-1\right)$.
Theorem c. Forprimes of the form $2 g(2 t+1)+1$, where $t \equiv h(\bmod 10)$ and $4 g h+2 g+1 \equiv \pm 1(\bmod 10)$, if
$U\{(p-1) / 2 g\}+1+c U\{(p-1) / 2 g\}-1 \equiv 0(\bmod p)$ and $c^{(p-1) / 2 g} \equiv 1(\bmod U\{(p-1) / 2 g\}+1+c U\{(p-1) / 2 g\}-1)$, then $k(H, p)=(p-1) / g$.
Proof. From the well known formulas,
(9) $U_{2 n+1}=U_{n+1}\left(U_{n+1}+c U_{n-1}\right)+(-1)^{n-1} c^{n}, \quad U_{2 n}=U_{n}\left(U_{n+1}+c U_{n-1}\right)$ and $H_{n}=P U_{n}+c Q U_{n-1}$,
let us set
(10)

$$
\begin{gathered}
U_{(p-1) / g \equiv 0(\bmod U\{(p-1) / 2 g\}+1+c U\{(p-1) / 2 g\}-1),} \\
U_{(p-1) / g+1} \equiv(-1)\{(p-1) / 2 g\}-1 c^{(p-1) / 2 g\left(\bmod U\{(p-1) / 2 g\}+1+c U_{\{(p-1) / 2 g\}-1)}\right)} .
\end{gathered}
$$

It is then easy to show that

$$
\begin{equation*}
U_{(p-1) / g} \equiv 0(\bmod p), \quad U_{\{(p-1) / g\}+1} \equiv 1(\bmod p) \tag{11}
\end{equation*}
$$

when it follows

$$
\begin{equation*}
H_{(p-1) / g} \equiv Q(\bmod p) \quad \text { and } \quad H\{(p-1) / g\}+1 \equiv P(\bmod p) . \tag{12}
\end{equation*}
$$

Hence, $k(H, p)=(p-1) / g$.
The orem d. For primes of the form $4 g t+1$, where $t \equiv h(\bmod 10)$ and $4 g h+1 \equiv \pm 1(\bmod 10)$, if

$$
U_{(p-1) / 2 g} \equiv 0(\bmod p) \quad \text { and } \quad(-c)^{(p-1) / 2 g} \equiv 1(\bmod p),
$$

then $k(H, p)=(p-1) / g$.
Proof. From the known formulas,
(13) $U_{2 n}=U_{n}\left(U_{n+1}+c U_{n-1}\right), U_{2 n+1}=U_{n+1}\left(U_{n+1}+c U_{n-1}\right)+(-1)^{n-1} \cdot c^{n}$ and $U_{n}^{2}-U_{n+1} U_{n-1}=(-c)^{n-1}$,
it is easy to show that
(14) $\quad U_{(p-1) / g} \equiv 0\left(\bmod U_{(p-1) / 2 g}\right), \quad U\{(p-1) / g\}+1 \equiv(-c)^{(p-1) / 2 g}\left(\bmod U_{(p-1) / 2 g}\right)$.
when it follows

$$
\begin{equation*}
H_{(p-1) / g} \equiv Q(\bmod p), \quad H\{(p-1) / g\}+1 \equiv P(\bmod p) . \tag{15}
\end{equation*}
$$

Hence $k(H, p)=(p-1) / g$.
Theorem e. For primes of the form $2 g(2 t+2)+1$, where $t \equiv h(\bmod 10)$ and $4 g+4 g h+1 \equiv \pm 1(\bmod 10)$, if

$$
U\{(p-1) / 2 g\}+1+c U(p-1) / 2 g-1 \equiv 0(\bmod p) \text { and }(-c)^{(p-1) / 2 g} \equiv 1(\bmod p),
$$

then $k(H, p)=2(p-1) / g$.
Proof. We have from $(14), U_{(p-1) / g} \equiv 0(\bmod p)$ and $U\{(p-1) / g\}+1 \equiv-1(\bmod p)$ so that

$$
\begin{equation*}
H(p-1) / g \equiv-Q(\bmod p) \quad \text { and } \quad H\{(p-1) / g\}+1 \equiv P(\bmod p) \tag{16}
\end{equation*}
$$

Hence the desired result follows.
The orem f. For primes of the form $2 g(2 t+1)+1$, where $t \equiv h(\bmod 10)$ and $4 g h+2 g+1 \equiv \pm 1(\bmod 10)$, if

$$
U_{(p-1) / 2 g} \equiv 0(\bmod p) \quad \text { and } \quad(-c)^{(p-1) / 2 g} \equiv 1(\bmod p),
$$

then $k(H, p)=2(p-1) / g$.
Proof. Let us use (13) to obtain

$$
U_{(p-1) / g} \equiv 0(\bmod p) \quad \text { and } \quad U\{(p-1) / g\}+1 \equiv-1(\bmod p)
$$

Then it is easy to show that

$$
\begin{equation*}
U_{2(p-1) / g} \equiv 0(\bmod p) \quad \text { and } \quad U\{2(p-1) / g\}+1 \equiv(\bmod p) \tag{17}
\end{equation*}
$$

when we get
(18)

$$
H_{2(p-1) / g} \equiv Q(\bmod p) \quad \text { and } \quad H\{2(p-1) / g\}+1 \equiv P(\bmod p)
$$

and the desired result follows.
Analogously, we state the following theorems.
Theorem g. For primes of the form $2 g(2 t+1)-1$, where $t \equiv h(\bmod 10)$ and $4 g h+2 g-1 \equiv \pm 3(\bmod$ 10), if

$$
U\{(p+1) / 2 g\}+1+c U\{(p+1) / 2 g\}-1 \equiv 0(\bmod p) \quad \text { and } \quad c^{(p+1) / 2 g} \equiv 1(\bmod p),
$$

then $k(H, p)=(p+1) / g$.
Theorem h. For primes of the form $4 g t-1$, where $t \equiv h(\bmod 10)$ and $4 g h-1 \equiv \pm 3(\bmod 10)$, if

$$
U_{(p+1) / 2 g} \equiv 0(\bmod p) \quad \text { and } \quad(-c)^{(p+1) / 2 g} \equiv 1(\bmod p) \text {, }
$$

then $k(H, p)=(p+1) / g$.
The orem i. For primes of the form $2 g(2 t+2)-1$, where $t \equiv h(\bmod 10)$ and $4 g+4 g h-1 \equiv \pm 3(\bmod$ p), if

$$
U\{(p+1) / 2 g\}-1+c U\{(p+1) / 2 g\}-1 \equiv 0(\bmod p) \quad \text { and } \quad(-c)^{(p+1) / 2 g} \equiv 1(\bmod p)
$$

then $k(H, p)=2(p+1) / g$.
Theorem j. For primes of the form $2 g(2 t+1)-1$, where $t \equiv h(\bmod 10)$ and $4 g h+2 g-1 \equiv \pm 3(\bmod 10)$, if

$$
H(p+1) / 2 g \equiv 0(\bmod p) \quad \text { and } \quad(-c)^{(p+1) / 2 g} \equiv 1(\bmod p) \text {, }
$$

then $k(H, p)=2(p+1) / g$.
The proofs for Theorems g -j are left to the reader.

REFERENCES

1. C. C. Yalavigi, "On the Periodic Lengths of Fibonacci Sequence Modulo p," The Fibonacci Quarterly, to appear.
2. C. C. Yalavigi, "A Further Generalization of Fibonacci Squence," The Fibonacci Quarterly, to appear.

[Continued from page 112.]

Therefore,
(7)

$$
F(0,1)=[1,1,1, \cdots]=\frac{1+\sqrt{4+1}}{2}
$$

or
(8)

$$
\lim _{\alpha \rightarrow \infty} \frac{I_{\alpha-1}(2 a)}{I_{\alpha}(2 a)}=\frac{1+\sqrt{5}}{2}=\phi(\text { the "golden" ratio). }
$$

Expressing ϕ in this manner as the limit of a ratio of modified Bessel Functions appears to be new [2].
REFERENCES

1. D.H. Lehmer, "Continued Fractions Containing Arithmetic Progressions," Scripta Mathematica, Vol. XXIX, No.s 1-2, Spring-Summer 1973, pp. 17-24.
2. D. H. Lehmer, Private Communication.
