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INTRODUCTION 

This paper concerns the periodic lengths of the Generalized Fibonacci Sequence modulo/?, where/? is a prime 
integer. The GF sequence will be denoted by Hn, 0=1,2, —, for which 

(1) H1 = P, H2 = bP + cQ, Hn = bHn-t+cHn-2 <n > 2) 

and its periodic length reduced modulo p, i.e., the periodic length of the recurring series 

(2) Hn (mod/7), n = 1,2,-, 

will be represented by k(H,p). Clearly for/?= 1, Q = 0 the periodic length of the series 

(3) U1 = 1, U2 = b, Un = bUn-f+cUn-2 (n > 2) 

is given by k(U,p). We prove the following theorems. 

2. NATURE OF k(H,p) 

Theorem a. For primes whose quadratic residue is b2 + 4c, if (b,c,P,Q) = 1, then k(H,p)\ (p - 1). 

Proof. In the known formula, 

(4) Hn = (1rn-msn)/(r-s), (r + s = b, rs = -c, 1 = P- $Q and m = P-pQ), 

letr,s = lb ±\/(b2 +4c))/2so that it may be simplified by the use of binomial theorem to obtain 

(5) 2nHn = {b»(1-m) + {n
1)b^1s]ISr^Hl+m 

+ - + O (^/7P~+4c))n(1 - (-1)nm)}/(sjWr^4c)). 

Then it is easy to show for/7 = p and/? + 1 that 

(6) Hp = P (mod/?), Hp+1 ^bPtcQ (mod/?), 
if lb2 + 4c)(p~1)/2 = 1 (mod/?) and (b,c,P,Q) = 1. Hence the desired result follows. 

Theorem b. For primes whose quadratic nonresidue \%b2 + 4c, \f (b,c,P,Q)= 1, then k(H,p)\(p2 - 1). 

Proof. On using the known formula Hn =PUn +cQUn-1, (b2 + 4c)^p"1^2 = -\ (mod/?) and the follow-
ing set of congruences, viz., 

(7) Up ES - 7 , Up+1 - 0, Up+2 = -c, 

U2p+1 - I U2p+2 - 0, U2p+2 - <-c)2 

Up(p-D+p-2 = I Up(p-D+P-1 = 0, Upfo-D+p = lr-cf"1, 

it is easy to show that 

150 



APR. 1977 PERIODIC LENGTHS OF THE GENERALIZED 
FIBONACCI SEQUENCE MODULO/? 

(3) Hp+1 = -cQ, Hp+2 = -cP, Hp+3 = -c(bP + cQ), 

H2p+2 = cQ, H2p+3 = (-c)2P, H2p+4 = (-c)2bP + c(cQ), 

Hp(P-i)+P~i - eft / / p f o - / ^ - r - d p " 7 ^ V + 7 - (-c)p-1bP + c(cQ), 

Hp(p+i) = -cQ, Hp(p+i)+i = (-cfP, Hp(p+1)+2 = (-c)pbP + c(-cQ). 

Clearly (-c)p =-c (mod/?) and (8) shows that k(H,p)\(p2 - 1). 

Theorem c. For primes of the form 2#(<?f + 1)+ 1, where t = h (mod 10) and 4gh + 2g + 1 =±7 (mod 10), 
if 
U{(p-l)/2g}+i+cU {(p-D/2g)-l = 0 (mod/?) and c

(p~1)/2g = 1 (mod U yp.1}/2gj+1 +cU yp.1)/2gy1 ), 

then /f|7/,/?j = fa - /j/#. 
Proof. From the well known formulas, 

(9) U2n+i = Un+1(Un+1+cUn-1) + (-1)n-1cn, U2n = Un(Un+1+cUn-1) and / / „ =PUn + cQUn.1 , 

let us set 
(10) ^ p - / M 7 - ° ( m o d u{(p-i)/2g}+l+cU{(p-l)/29yi). 

It is then easy to show that 

(11) u(p-1)/g = # (mod/?), U{(p-U/g}+i = 7 (mod/?) 
when it follows 

(12) H(p~D/g = # (mod/?) and H{fp-1)M+1 = p (mod/?). 
Hence, tf//,/?; = fa - 7j/# 
Theorem d. For primes of the form4#f-^ /, where t=h (mod 10) and 4gh + 1 =±1 (mod 10), if 

U(p-D/2g = 0 (mod/?) and (-c)(p~~1)/2g ^ 1 (mod/?), 

then tf//,/?J - fa - 7j/#. 
Proof. From the known formulas, 

(13) U2n = Un(Un+1+cUn.1), U2n+1 = Un+1(Un+1 + cUn.1) + (-1)n-1cn and U^-Un+iUn-l = (-c)n~1 , 

it is easy to show that 

(14) U(p..1)/g - 0 ( m o d ^ V ^ ) , Ufr-D/gyj - (-c)(p'1)/2g (mod U{p.1)/2g). 

when it follows 

(15) H(p-1)/g = Q (mod/?), H{(p-i)/g) + l = P (mod/?) . 
Hence tf//,pj = fa - /,!/#. 
Theorem e. For primes of the form 2#f2f-f2j + /, where t = h (mod 10) and 4g + 4gh + 1 = ±\ (mod 10), 

if 
U{(p-D/2g}+l+cU (p-D/2g - 7 = 0 (mod/?) and (-c)(p~1)/2g = 1 (mod/?), 

then k(H,p) = 2(p- 1)/g. 

Proof We have from (14), U(p-i)/g = ft (mod/?) and Uf(p-i)/g\+i = - 1 (mod/?) so that 

(16) H(p-D/g = - | Q (mod/?) and H^1)/gy1 = P (mod/?). 

Hence the desired result follows. 

Theorem f For primes of the form 2g(2t+ 1)+ /, where f = /) (mod 10) and4gh+2g + 1 = ±\ (mod 10), 
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U(P-D/2g = 0 (mod/7) and (-c)(p~1}/29 = 1 (mod/7), 

then Arf//,/?; = 2(p - 1)/g. 

Proof. Let us use (13) to obtain 
u(p-l)/g = ° (mod/7) and ( / { ( p - D / g y i = - 1 (mod/7). 

Then it is easy to show that 

(17) U2(p~j)/g = 0 (mod/7) and U [2(p-D/g}+1 = (mod/7) 
when we get 

(18) H2(p-i)/g = Q (mod/?) and H [2(p-i)/g)+l = ^ (mod/7) 
and the desired result follows. 

Analogously, we state the following theorems. 

Theorem g. For primes of the t®rm2g(2t + 1)- 1, where t = h (mod 10) and4#/? * i t y - 7 = ±3 (mod 
10), if 

U{(p+i)/2g} + i+cU{(p+1)/2gyi = 0 (mod/7) and c
ip+1)/2g = 1 (mod/7), 

then Ar|7/,/7,J = (p + 1)/g. 

Theorem h. For primes of the form 4gt - 1, where t = h (mod 10) and 4gh - / = ±3 (mod 10), if 

U(p+1)/2g = 0 (mod/7) and f-c)(p+1)/29
 s 1 ( m o d ^ 

then Ar/7/,/7J = fa + 7J/# 

Theorem i. For primes of the form 2g(2t + 2) - 7, where f = /? (mod 10) and 4# + 4gh - 1 =±2> (mod 

^{(pH)/2g}-l+cU{(p+1)/2gyi = 0 (mod/7) and (-c)
(p+1)/2g = 1 (mod/7), 

then AYA/,/7j = iY/7 * 7j/#. 
Theorem j. For primes of the form 2g(2t + 1) - 1, where f = /? (mod 10) and 4#/? +2g- / = ±3 (mod 10), 

if 
H(p+D/2g = 0 (mod/?) and (-c)

{p+1)/2g = 1 (mod/7), 

then AYM/7; = 2//7 * 7j/#. 
The proofs for Theorems g-j are left to the reader. 
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[Continued from page 112.] 
Therefore, 

(7) F(0,1) = [1,1.7,...] = 1+^4
2

+1 

or 

(8) J i m , ^ = 0 - = LtJL = 0 (the "golden" ratio). 

Expressing <p in this manner as the limit of a ratio of modified Bessel Functions appears to be new [2 ] . 
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