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SUMS OF PRODUCTS INVOLVING FIBONACCI SEQUENCES 
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DEDICATED TO JANE LEGRANGE 

Definition. {Hn} is Fibonacci if Hn = Hn-.f + Hn-2, n > 1. Every Fibonacci sequence { / / „ } can be 
written a$Hn = Aan + B$n, where a,j3are the roots six2 - x - 1 = 0. Thus 

Theorem. 
n 

E *vHiKi= ° 
u=o 

for any two Fibonacci sequences if and only if 
n 

P(z,w) = Yl ajjz'w1 

U=0 
vanishes on {(a, a), (a, $), ($, a), ($, &)}. 

Example. (Berzsenyi [1] ) : If n is even, prove that 
n 

E HkKk+2m+1 = Hm+n + lKm+n + 1 - Hm+iKm+i + HQl<2m+l • 

k=0 

The corresponding P(z,w) is easily seen to satisfy the hypothesis of the theorem (using a/3= - 1 , a2 - a - 1 =0). 
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