REFERENCES

1. Krishnaswami Alladi, "A Farey Sequence of Fibonacci numbers," The Fibonacci Quarterly, Vol. 13, No. 1, (Feb. 1975), pp. 1-10.
2. Krishnaswami Alladi, "Approximation of Irrationals with Farey Fibonacci Fractions," The Fibonacci Quarterly, Vol. 13, No. 3 (Oct. 1975), pp. 255-259.
3. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1965, Ch. III.
4. J.M. Mack, "A Note on Simultaneous Approximation," Bull. Austral. Math. Soc., Vol. 3 (1970), pp. 81-83.
5. J.M. Mack, "On the Continued Fraction Algorithm," Bull. Austral. Math. Soc., Vol. 3 (1970), pp. 413-422.

*

SUMS OF PRODUCTS INVOLVING FIBONACCI SEQUENCES

DORON ZEILBERGER
The Weizmann Institute of Science, Rehovot, Israel
dedicated to jane legrange

Definition. $\left\{H_{n}\right\}$ is Fibonacci if $H_{n}=H_{n-1}+H_{n-2}, n>1$. Every Fibonacci sequence $\left\{H_{n}\right\}$ can be written as $H_{n}=A a^{n}+B \beta^{n}$, where a, β are the roots of $x^{2}-x-1=0$. Thus
Theorem.

$$
\sum_{i, j=0}^{n} a_{i j} H_{i} K_{j}=0
$$

for any two Fibonacci sequences if and only if

$$
P(z, w)=\sum_{i, j=0}^{n} a_{i j} z^{i} w^{j}
$$

vanishes on $\{(a, a),(a, \beta),(\beta, a),(\beta, \beta)\}$.
Example. (Berzsenyi [1]): If n is even, prove that

$$
\sum_{k=0}^{n} H_{k} K_{k+2 m+1}=H_{m+n+1} K_{m+n+1}-H_{m+1} K_{m+1}+H_{0} K_{2 m+1}
$$

The corresponding $P(z, w)$ is easily seen to satisfy the hypothesis of the theorem (using $a \beta=-1, a^{2}-a-1=0$).

REFERENCE

1. G. Berzsenyi, "Sums of Products of Generalized Fibonacci Numbers," The Fibonacci Quarterly, Vol. 13 (1975), pp. 343-344.
