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Corollary. On similar lines
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NOTE. Given a partition of V/ in terms of 1 and 2, if we rearrange the summands so as to get the maximum
number of max we get aZ, composition. If we rearrange to get the maximum number of min we get aZ; com-
position. Roughly a Zeckendorf composition is either a maximax or a maximin composition.
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A TOPOLOGICAL PROOF OF A WELL KNOWN FACT
ABOUT FIBONACCI NUMBERS

ETHAN D. BOLKER
Bryn Mawr Coliege, Bryn Mawr, Pennsylvania

Theorem. Letp be aprime. Then there is a sequence {mj} of positive integers such that

Fmj =1=Fmi g = = Fmjer =0 (mod p/).

The proof depends on the following lemma.

Lemma. LetG be a topological group whose completion (in the natural uniformity) is compact. Letg< G.
Then the sequence g, g2, g>, - has a subsequence which eonverges to 1.

Proof. The sequence of powers of g has an accumulation point A =],!imm g 7 in the compact completion G
of G. Letm;=njrq —n;. Then gm]? 7in G and hence in G.
To prove the theorem we shall apply the lemma to
(1 1}
=i 4)
in the grouE G of 2x 2 integer matrices of determinant £1 topologized p-adically. That is, for every integern
write 1 =p°m, (p,m)= 1 and set Iy =p‘k, Then forA4, B <G let
d(AB) = max{| A~ By, i) = 1.2}

G equipped with the metric 4 satisfies the hypaotheses of the lemma.
It is easy to check inductively that
m o _ ( Fm+1 Fm
g = Fm Fm—l '

{Continued on p. 280.]



