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6. A GENERATING FUNCTION FOR HALSEY'S FIBONACCI FUNCTION
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1. Halsey [2] defined a Fibonacci function by means of

m 1
(1.1) F, = Z {(u—x} f ququ”—x)kdx} )
k=0 0
where m is the unique integer satisfying
(1.2) Bu—1<m< %u,
that is
5] (%u # integer)
(1.3) m {%zu — 1 (%u =integer) ~
The definition {1.1) is equivalent to
m k 1\)
_ u—k—11%
(1.4) F, = ( h / ,
k=0

where again m is defined by (1.3).
In a recent note [1], Bunder has proved that F,, as defined by (1.4) satisfies the recurrence

) 0 (2m < u < 2m+1)
(1.5) Furt = Fu=Fu-s = {(“"”‘2) (Zm+1 < u<2m+2)
m + 1

In the present note we construct a generating function for the sequence

(Fum}  i=012-;0<u< 1)
We show that

= .2
(1.6) Y Fax ==X gy < g,
n=0 T—x—-x
This result contains (1.5). It also follows from (1.6) that
(1.7) Furn = 3 (“+§>2> Frzier (0 <u<1),
0<2j<n

where the F”ﬁzjﬂ on the right are ordinary Fibonacci numbers. Thus F, ., is a polynomial in v of degree
< n/2. Indeed the coefficients of the polynomials

(1.8) Polu) = nl Fuiop, Q. (u) = nl Fuiznee

are positive integers. For some properties of these coefficients see § 4 below.
2. Since m as defined by (1.2), is a function of u, we put m = m(u). Then clearly

(2.1) mlu + 2} = mlu) +j G=012" .

Assume that
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(2.2) 0 <u <2
Then by (1.2), mfu) = 0 and m(u + 2j) = j. Thus

J :
fus - £ (7070 1)

k=0 L=0
Hence
= - i . - o
Z Fu+2jX2": Z XZ] '\(u+§i1271): Z X2k2(u+]+‘2k41
=0 =0 k=0 k=0 j=0
ol 2)~u
_ z X2k(7 XZ)-M~2]€ (7:__){ ) .
k=0 1—x%1-x272
so that
b . 2,2-u
(2.3) Y Fuagxl = AI=xT)T 0 <u<2.
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j
Z w+jtk—1
ik

0
Assume next that @ <u < 1, so thatm(u + 7)= 0 and m(u + 2/ + 1) =/. Then as above

[==} oo ]
2j+1 2j+1 +i+k
Z Fu+2j+1X J = E : x4 z < uji A )

_ f X2k+1 f( u+j‘+2/e
k=0 =0 !

j=0 =0 k=0
= ‘E xZktlg _ 2u-2k-1 A1 =x?t
k=0 1—-x2(1-x%)2
This gives
- , 2y1-u
(2.4) Y Fusjerx ¥t = —’i’:—ZX—ZJ——Z 0<u<1.
=0 (1—x%)%—x
Combining (2.3) and (2.4), we get
> . 2 1-u
(2.5) Y Rupd ==X gcy< )
=0 T—x—x?
3. Itis clear from (2.5), to begin with, that
(3.1) lm  Furn = Fuis (h=012")
u=71~

where £, +; denotes an ordinary Fibonacci number. In the next place, writing (2.5} in the form

oo

(1—-x—=x?) Z Fu+jxj: Z

( u+n—2 >X2n

i

=0 n=0
and equating coefficients, we get
(3.2) {Fll+27‘l+1 = Futzn = Fus2u-t i Uu + 20 0 <u<1),
Futon+2— Fustoner — Fuson = (2,, + 2)
Since, by (1.2),
m{u+2n) = mu+2n+1) =n 0 <u<l),

and

2n < u+22n < 2n+1, 2n+1 <

it follows that (3.2) is equivalent to {(1.5).
Since the right-hand side of (2.5) is equal to

u+n+1 < 2n+2
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Z F,1+1X” Z ( u +jj7 2>X2j,
n=0 j=0
we get

(3.3) Fur = 3, u+§—2> Fu-2j+1 0 <u<Tl.
0<2j<n
Alternatively, since

2 oo oo
'"_L:L_Z_ =(1- XZ) Z Fn—/—]".(” =T+x+ Z (Fut1— Fn~1)X” =1+ Z FnX” )
T—x—x n=0 n=2 n=1

it follows from (2.5) that

7 .
(3.4) Fuim = 3 [t 1>Fn_2j 0<u<1),

0<2j<n /

where the dash indicates that, if F; occurs, it is to be taken equal to 1.
From (3.3) or (3.4) we infer that, for 0 < v < 1, F,,4,, is a polynomial of degree <n/2. Since

<u+jf 1) —ulut1)-(u+j—1)
) /!
the coefficients of the polynomial are positive. For example
Fu=1, Furr =1 Fusz = 140 Fup3 = 240, Fueq = Bl6+3u+u?),
Foi5 = %{i'0+5u +u?)  Fuig = é_ 148 +23u +6u? +u°)

s

Another corollary of (3.3) may be noted. We have

+j—2
Futn+1F— FusnFr+1 = Z (u ; ) Fn—2j+2Fk
0<2j<n+1
w+j—2 +j—2"
-z ( ! ; )F7’—2]'+1 Ferr = 22 ( ! jJ |Fn-2j+2Fle = Fu-2j+1 Fle+1)
0<2j<n 0<2j<n+1 !
Since ,
+
Fnt1Fu— FnFuer = (= )" Fin-n»
we get
k+ +j—2
(3.5) Fu+n+1 Fk = Fun Fk+1 = (-1) ! E ( A >Fn~k—2j+1 .

0<2j<n+1

In particular, for 0 < k <n + 1, again making use of (3.3),

(3.6) Futnt1 Foe = Fusn Fr+1

= Rt R (T gy (0 <k <)
n-k+1<2j<n+1
For k = n this reduces to

(3.7) Fu-hz+1 F;z - Fu+n Fu+1 = (- 7)”+1F” - 7)”+1 Z <M +§“ 2>F2j'1
0<2j<n+1
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Similar results are implied by (3.4).

4. We have noted above that, for 0 < u < 1, F,,4, is a polynomial of degree < /2, indeed of degree /n/2/.
Put
(@.1) n! Fyizn = Pylu), n!Fysoney = Qulu),

so that P, (u) and @, (u) are of degree n. However we now think of them as defined for all v by means of (3.4)
and (4.1). It follows from (1.5) that

w2 {P”(u) = 0Py () + 00,1 (u)+(u+n—2)—uln—1)
) Q,(u) = Pylu)+nQ,_q(u) .
Now put
Pulu) = 3 plnkJu®, Qufu) = 3, ginku® .
k=0 k=0
We have also

(utn—1)(u+ T = Z St kJu*,
k=0

where S(n, k) denotes a Stirling number of the second kind. Thus
n+1

(utn—1)ulu—1) =3 (Slhk- 1) St ku® .
k=0
Hence (4.2) gives
(4.3) qln,k) = p(n,k)+ng(n— 1)k)
and
(4.4) pln,k) = npln—1,k)+ngln—1,k)+Sn—1,k—1)—=Sh~1, k).
Using either (4.2) or (4.3) and (4.4), the following tables are 2asily computed.
k ]
) 0] 1| 2] 31
0 1
1 1 1
plnk): 2 6 3|1
3 48 23 6 1
4 504 | 242 | 59 |10 |1
k
" 0 1 2 314
0 1
1 2 1
aln.k) : 2 10 5| 1
3 78 38 9 1
4 1816 | 394 | 95} 14| 1

It is evident from the recurrences (4.3) and (4.4) that the p(n, k) and g(n,k) are integers. Moreover, by (3.4),
they are positive integers.
By (3.3) and (4.1),

(4.5) Po(1) = n! Foneq, 0,(1) = nl Fansp .

This furnishes a partial check on the computed values. For example, using the table for p(n, k), we get
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fl

4
Z‘ pld k) = 816 = 24.34 = 24F, .
b=

d
0
Similarly
4
S ql4,k) = 1320 = 24.35 = 24F,, .
k=0
Itis clear that
(4.6) plnn) = glnn) = 1 n=2012-)
Taking k=n — 7in (4.3) and n in (4.4), we get
(4.7) gin,n—1) = pln,n-1)+n =1
and
(4.8) pln+1,n) = 2(n+1)+8Mm,n—-1)- 1,

respectively. Since
Stn,n— 1) = %n(n— 1},
it follows that

pny,n—1) = Yn(n+1)
(4.9) {q(ri,z—l):%7;;;+3):p(n+1,n)—1.

As for k= 0, it is evident from (3.4) that
lim Fu+n = Fn;

so that u=0
(4.10) p(n,0) = nlFy,, q(n,0) = n! Fonpq.
It would be of interest to find combinatarial interpretations of pfn,k) and g(n, k)
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[Continued from p. 245.]

(As a corollary, note that we have proved
Fnv1Fm-1— F}i = detfg™) = (- ™.

Then the lemma implies there is a sequence {mj} for which
m

i (10
g 7(01)

in the p-adic topology. Thus we can choose {m;} so that d(1,4"7) < p7. Then p/ divides ij and 7 — Fm].+1,

which proves the theorem.

It is clear that one can vary G and g in the argument above to prove a class of theorems related to the well

known one quoted.
Foloiookoiok



