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1. Halsey [2] defined a Fibonacci function by means of 
m r 1 ~\ 

(1.1) Fu = £ \(u-x) f xu~2k'Ul-x)kdx\ , 
k=0 I 0 J 

where m is the unique integer satisfying 

(1.2) 1/2u- 1 < m < 1/2u, 

i o\ m =\[V2u] (Viu $ integer; 
lm6} m \V2u-l (V2 

The definition (1.1) is equivalent to 

u - k - 1 

(1-5) Fu+1 - Fu- Fu„1 = 

k=0 
where again m is defined by (1.3). 

In a recent note [1] , Bunder has proved that Fu as defined by (1.4) satisfies the recurrence 
f 0 (2m < u < 2m + 1) 

lCm + i"2) (2m + 1 < u < 2m + 2) 
In the present note we construct a generating function for the sequence 

{Fu+n) d = 0,1,2, . . . ;0 < ( / < / A 
We show that 

(1-6) E /r
M+n^H - — " - — 7 W < 1/ < U 

w=0 1-X-X 

This result contains (1.5). It also follows from (1.6) that 

(1-7) Fu+n= £ [U+)-2)Fn-2i+l (0<u<V, 

0<2j<n ' 
where the Fn_2j+i o n the right are ordinary Fibonacci numbers. Thus Fu+n is a polynomial in u of degree 
< n/2. Indeed the coefficients of the polynomials 
(1-8) Pn(u) = n! Fu+2n, Qn(u) = n! Fu+2n+1 

are positive integers. For some properties of these coefficients see § 4 below. 
2. Since m as defined by (1.2), is a function of u, we put /?? = m(u). Then clearly 

(2.1) m(u + 2j) = m(u)+j (j - 0, 1, 2, - 1 

Assume that 
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(2.2) 0 < u < 2. 

Then by (1.2), m(u) = 0 and m(u + 2j)=j. Thus 

Fu+2J " E 
fe=o 

u -h 2j — k — 1 
J 

E 
fe=0 

u + j + k - 1 
j ~ k 

Hence 

j=0 j=0 k=0 X ' I*-" 

,2k 

k=0 j=0 

u + j + 2k 

E x2k(1-x2) 
k=0 

2\-u-2k d - x2ru 

1 -x2(1 - x2)'2 

so that 

(2.3) E Fu+2jX 
j=0 

2] (1 -x2)2~u 

(l-x2)2-x2 
(0 < u < 2). 

Assume next that 0 <u < /, so that m(u+ 1) = 0 andmfu + 2j+ 1)=j. Then as above 

3=0 j=0 k=0X ' k=0 j=0 V 

E *2k+l(1-x2) 
k=0 

2ru-2k-l _ x('I -X2)'11'1 

i-x2(i-x2r2 

This gives 

(2.4) ,2]'+* = x(l~x ) 
2\l-u 

E Fu+2j+1x2^ = - ^ - - - V — r (0 < u < V. 
ro (1-x2)2-x2 

Combining (2.3) and (2.4), we get 

(2.5) 
2 \l-u 

La 'u+jX 
j=0 1 - X- X 

3. It is clear from (2.5), to begin with, that 

•u+j*J - — y (0 < u < 1). 

(3.1) I'm Fu+n = Fn+1 (n = 0, 1,2, •), 
u=l~0 

where Fn+\ denotes an ordinary Fibonacci number. In the next place, writing (2.5) in the form 

+JXJ = E (1-x-x2) £ Fu+jXi 
j=0 n=0 

and equating coefficients, we get 

u + n — 2 \ y2n 

(3.2) { F"+2n+1 F
p
u+2n ~ Fu+2n-l _ °{u + 2n\ (0 < U < 1), 

K l~u+2n+2 ~ t~u+2n + l - f~u+2n " \2Yi 

Since, by (1.2), 

and 

k 2n + 2 J 

m(u + 2n) = m(u + 2n+ 1) = n (0 < u < 1), 

2n < u + 2n < 2n + 1, 2n + 7 < u + 2n + 1 < 2n + 2, 

it follows that (3.2) is equivalent to (1.5). 
Since the right-hand side of (2.5) is equal to 
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we get 

(3.3) FM+n = £ (" +i,~2) Fn-2j+i (0 <u < 1). 

Alternatively, since 
,2 

/ « / l X ' r- 77 - . . XT^» / i - r- I 17 ^ . X " r-

7 X 
1 ' X ~ (1-X2) £ * W = 1+X+ £ (Fn+l-Fn-l)xn = 1+ Z / V 

f 2 
l-X-X n=o n=2 n=1 

it follows from (2.5) that 

(3-4) Fu+n = £ ' ( U +]~ ^Fn-lj (0 <u < 1), 
0<2j<n ' 

where the dash indicates that, if F0 occurs, it is to be taken equal to 1. 
From (3.3) or (3.4) we infer that, for 0 < u < 1, Fu+n is a polynomial of degree < n/2. Since 

u + J - 1 \ = u(u+ V -(u + i- V 
j i a 

the coefficients of the polynomial are positive. For example 

Fu = I Fu+1 = 1, Fu+2 = 1 + u, Fu+3 = 2 + u, Fu+4 = 1/2(6 + 3u + u2), 

Fu+5 = j(W + 5u+u2), Fu+6 = L(48 + 23u+6u2 + u3). 

Another corollary of (3.3) may be noted. We have 

Fu+n+l Fk ~ Fu+n Fk+1 = Y ( U + \ ~ ) Fn-2j+2Fk 
0<2j<n+l 

12 f U+J-~ )Fn-2j+lFk+l = J2 \ U + ! ~ )Fn-2j+2Fk- Fn-2j+lFk + l)-
0<2j<n 0<2j<n+lX ' 

Since 
'm+l 'n ~~ 'm 'n+1 ~ « '' 'm-n > 

we get 

(3-5) Fu+n+1Fk- Fu+nFk+1 = (-1) +1 ]T | U+J.~~ )Fn-k-2j+i • 
0<2j<n+l 

In particular, for 0 < k < n + /, again making use of (3.3), 

(3.6) FuHl+1 Fk - Fu+n F^+1 

= h1)k+lFu+n+k + (-1)k+l £ (U+ir2)F2j-n+k-l (0 <k < n). 
n-k+K2j<n+l 

For k = n this reduces to 

(3.7) Fu+tl+1 F„ - Fu+nFH+1 = (- 1)"+1FU + (-Vn+1 £ [u+ir2)F2H . 
0<2j<n+l * ] 
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Similar results are implied by (3.4). 
4. We have noted above that, for 0 < u < 1, Fu+n is a polynomial of degree < n/2, indeed of degree [n/2]. 

Put 
W.D n! Fu+2n = Pn(u), n!Fu+2n+1 = Qn(u), 
so that Pn(u) and Qn(u) are of degree/?. However we now think of them as defined for all u by means of (3.4) 
and (4.1). It follows from (1.5) that 

(4.2) 

Now put 

We have also 

Pn(u) = nPn_i (u) + nan_t (u) + (u + n-2)- u(n - 1) 
Qn(u) = Pn(u) + nan_t(u) . 

PJu) = 2 p(n,k)uk, Qn(u) = £ q(n,k)uk 

k=0 k=0 

(u + n- 1).~(u+ 1)u = Y, S(n-k)u > 
k=0 

where S(n,k) denotes a Stirling number of the second kind. Thus 
n+l 

(u + n- l)-u(u-1) = ^ ($(n,k-1)-$(n,k)uk . 
h=0 

Hence (4.2) gives 

(4.3) q(n,k) = p(n,k) + nq(n- Ilk) 
and 
(4.4) p(n,k) = np(n- l,k) + nq(n- 1,k) + S(n- 1,k- 1)-S(n- 1,k). 

Using either (4.2) or (4.3) and (4.4), the following tables are easily computed. 

p(n,k): 

n \. 

0 
1 
2 
3 
4 

0 

1 
1 
6 
48 
504 

1 

1 
3 
23 
242 

2 

1 
6 
59 

3 

1 
10 

1 

1 

l\ h 

n \ . 

0 
1 
2 
3 
4 

0 

1 
2 
10 
78 
816 

1 

1 
5 
38 
394 

2 

1 
9 
95 

3 

1 
14 

4 

1 j 

q(n,k): 

It is evident from the recurrences (4.3) and (4.4) that thep(n,k) and q(n,k) are integers. Moreover, by (3.4), 
they are positive integers. 

By (3.3) and (4.1), 

(4-5) Pn(1) = n!F2n+h Qn(V = n! F2n+2 . 

This furnishes a partial check on the computed values. For example, using the table \wp(n,k), we get 
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4 
] T p(4,k) = 816 = 24.34 = 24F9 . 
k=0 

Similarly 
4 

£ q(4,k) = 1320 = 24.35 = 24F10 . 
k=0 

It is clear that 

(4.6) p(n,n) = q(n,n) = 1 (n = 0, 1,2, - A 

Taking k = n - 1 in (4.3) and/7 in (4.4), we get 

(4.7) q(nf n - 1) = p(n, n- 1) + n (n > 1) 
and 
(4.8) p(n+ 1,n) = 2(n+1) + S(n,n- 1)- 1, 
respectively. Since 

S(n,n- 1) = 1/2n(n- 1), 
it follows that 
lA Q) \P(n, n - 1) = V2n(n + 1) 
V ' 1 q(n, n - 1) = Vm(n + 3) = p(n + 1, n) - 1 . 

As for k = 0,\\ is evident from (3.4) that 
lim Fu+n = Fn, 

so that u~° 

(4.10) p(n,0) = n!F2n, q(n,0) = n! F2n+i . 
It would be of interest to find combinatorial interpretations otp(n,k) and q(n,k). 
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******* 
[Continued from p. 245.] 

(As a corollary, note that we have proved 
Fm+lFm-i-Fl = det(gm) = (~1)m.) 

Then the lemma implies there is a sequence {nij} for which 

*my-' = ( * ? ) 
in the/7-adic topology.Thus we can choose {nij} so thatd(1,g J) <p~]. ThenpJ divides Fm. and 7 - Fm.+1, 
which proves the theorem. 

It is clear that one can vary G and g in the argument above to prove a class of theorems related to the well 
known one quoted. 

******* 


