UNIFORM DISTRIBUTION (MOD ) OF RECURRENT SEQUENCES

STEPHAN R. CAVIOR
State University of New Y ork at Buffalo, Buffalo, New York 14226

In this paper it is shown that, for any odd prime p, a sequence of integers can be found which is uniformly
distributed (mod m) if and only if m is a power of p.

Suppose m is an integer greater than 1. We say that an infinite sequence of integers { Ty } is uniformly distrib-
uted (modm) ifforj=0,17, -, m—1

. 7 . _1
Am, = Al m) = o,
where Afn,;,m) denotes the number of terms among 7, -, T,, which satisfy the congruence

Ti=; (modm).

The combined results of Kuipers and Shiue [1] and Niederreiter [2] establish the fact that the Fibonacci se-
guence {F,,} is uniformly distributed (mod m) if and only if m is a power of 5. In this paper we show that, for
any odd prime p, asequence of integers can be defined by alinear recurrence of the second order which is uni-
formly distributed (mod m) if and only if m is a power of p.

We first prove

Lemma. Suppose p is an odd prime and that & is a positive integer. Then p + 7 belongs to the exponent
p* (mod pk+1).

Proof. We use induction.

For the case k = 7, note that

(p+1)P = pP+...+<g)p2+p2+l =17 (modpz).

Now if p + 7 belongs to e (mod p 2), it follows thate|p, hencee = p.

Suppose now thatp + 7 belongs to p* (mod p**1). Then
(p+1)P = tpk+1 +1

and k+1

+1P = (" 1P = (P e (B (pR )2 Rt g,
Thus bt1
(1) (p+ 1P =1 (modpk*?).

Soif p + 7 belongs to e (mod pk+2), then e!pk“. But from (1) it follows that
(p+1)¢ =1 (modp*H);
. : e k _k _ k+1
and by the inductive supposition, p |e. Therefore,e =p~ ore=p~"".

Now A k k
(2) (p+ l)p = pk ng.,«_...+(p‘2 )p2+pk+1 +1 (modpk+2),
We next show that L
8) (p,

) ]
is divisible bypk*ﬁz forj:Z, 3, -+, k. 1t will be useful to recall
(4) p'k =pk(pk—7)~~-(pk—/'+7)
] /’
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Let p(n), p(d), and p(g) denote, respectively, the highest power of p dividing the numerator, the denomina-
tor, and the quotient in (4). When ; = 2, p(n) > k, p(d) = 0, so p(q) > k. When j = 3, p(n) > k, p(q) < 1,
so plg) =k — 1. In general, p(n) = k and by the customary formula

pld) = E[i <jYy L--Ls
e=1 L p°_ =1 p¢ P
Since p > 3, we see that

pld) < L.
. 2
and since

é— <j=2 (=4 -,k

it follows that
plg) > k—j+2 (j = 2,3 -, k.

Pk j
f p (j:ZI ,k}

k
p+ 1P =pF w1 £1 (modp

and it follows finally thate =pk+1, which completes the proof of the lemma.
We turn now to our major result.

Returning to (2), we see that

is divisible bypk+2. Hence
k+2)

Theorem. Letp be an odd prime and { 7, } be the sequence defined by

Turt1 = P+ 2)T— (p+ )T 1
and the initial values 7; = 0, T, = 7. Then {7,,} is uniformly distributed (mod m) if and only if m is a power
of p.

Proof. We associate with {Tn }the quadratic polynomial
xZ - (p+2)x+p+1
whose zeros over C are p + 7 and 7. It can be shown [3] that T,, is expressible in terms of those zeros as
T, = lg{/,ﬁ 1)
PART 1. In this part of the proof we show that {T,.l} is uniformly distributed (mod pk), k=123 .
As the first step we prove that {7’1, Ty, -, T k} forms a complete residue system (mod,uk). Accordingly,
suppose that 7; = 7; (mod p*), or equivalently,

;{p+7/l_ 1y =Lip+1 -1} (modph),

Iy
p
where 7 </, ; <pk Then ) )
o+ 1)1 = (p+ )71 (modp*t)
Supposing / > j, we write ) '

p+ 1) p+1)¢ = (p+ 1)1 (modp**l),
where 0 <e <pk — 1, and it follows that

(p+1)¢ =1 (modp*)

But by the Lemma, p + 7 belongs to the exponentpk (mod pk*1), so thate =0 and /= .
In this section of Part 1, we prove that {7,,} (mod p*) has period p*. Specifically, we prove that

T ko, = Ty and Tpk+2 =T

(mod p*). 1t will follow that .
T; = THpk (mod p*®)
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for /=12 3, . Note first that the congruence

k
7 p k
—_ + —_ =
7 k+1 {(p 1) 7} =0 (modp®)
is equivalent to

k
(5) (p+1)P =1 (modp**T)
which follows from the Lemma. Note next that thekcungruence
7 +1 ke
T, = Hmropioq) = d
pk+2 p{(p ) 7 7 (modp®)
is equivalent to b
p+1)P T =p+g (modpkji)
which reduces to (5).
Combining the results of Part 1, we see that the complete residue system (modpk) occurs in the first and all
successive blocks of p* terms of {7,,}, proving that {7} is uniformly distributed (mod p¥).

PART 2. In this part of the proof we show that {Tn} is not uniformly distributed (mod m) if m is not a
power of p. ’

If {Tﬂ} is uniformly distributed (mod m), then it is uniformly distributed (mod ¢) for every prime divisor g
of m: We show here that {Tn} is not uniformly distributed (mod g) for any prime g # p. There are two cases to
consider according to whether (p + 7, g)= 1 org.

If(p+ 1, q)=1 we can prove

(6) T =0 (modg)
and
(7) Tg+1 =1 (modg).
Equation (6) is equivalent to

T,=H+1T1 -1} =0 (modg)
or p
(8) (+1)91 =1 (modpg)
which is equivalent to the pair of congruences
(9) (p+1)T1 =17 (modp)
and
(10) (p+1)1 =1 (modg).

Equation (9) is trivial, and (10) is proved by Fermat's theorem. Equation (7) is equivalent to
';7{(p+ 7)9-1) =1 (mod q)

or
(p+1)4 =p+71 (modpg)

which reduces to (8). Now (6) and (7) evidently imply that the period of {Tn} (mod g) is a divisor of g — 7,
consequently at least one residue will not occur in the sequence.
If on the other hand (p + 7, g) = g, then
Thet = +2)T,—(p+1)T-; =T, (modg);

thus { Tn} (mod g) becomes {0, 1, 1, -} which plainly is not uniformly distributed (mod g¢). This completes
the proof of the theorem.
R. T. Bumby has found conditions for a sequence defined by a second-order linear recurrence to be uniform-

ly distributed to all powers of a prime p.
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