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Itis a well known resuit that, for the Fibonacci numbers Fpro= Fpig* Fp, Fo=0, F7=1,
lim_ fnrr 145
= oo > -

See [1]. Our main result in this paper is that convolving linear recurrent sequences leaves limiting ratios un-
changed. Some particular cases of our theorem prove an interesting study. it is indeed surprising that such strik-
ing limiting cases have been left unnoticed.

Definition 1. 1f {u,,}:zo is a sequence of positive real numbers and if

. u
A= lim ntf

n - oo un .
then A is defined to be the limiting ratio of the sequence {u,, 3
Definition.2. 1f {u,} is alinear recurrence sequence
M a0Un+r* @gln+r-1* a2Une-2* -t ary = 0
then
r r-1 =
agx"+aix" ' +ta, = P,x)

is called the auxiliary polynomial for the sequence {u‘n} .
Definition 3. 1f {u,} = U and {v, } = V are two linear recurrence sequences with generating functions

‘f’_(i(l and H(X}

arx) Six)’
respectively, we say {u,,} and {Vn} are refatively prime if
(Plx), Sx)) = (Rix), Qlx)) = 1.
The following classic result was known to Euler:

Lemma. 11 the auxiliary polynomial £, (x) for the sequence {un} in (1) has asingle root of largest abso-
lute value, say A, then

Let us call such a A as a dominant root of P, (x). Moreover, let Dom{a,f) represent the number with bigger
absolute value.
The Lemma stated above leads to the following general theorem.

Theorem 1. Let
{ Up }:;0 and { Yn }I:o=0
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be two relatively prime linear recurrence sequences with auxiliary polynomials P, (x) and P, (x) whose domi-
nant roots are A, and ... Then, if { Wn}:=0 is the convolution sequence of {u,,} and{v,}.

n
(2) Wn = D Vkln-k.
k=0

then Wines
. n+ _
Him " Dom (A, Ay).
Proof, Consider a polynomial Pfx) with non-zero roots a s, a», -, a,. Let P*(x) denote a polynomial
with roots /a4, 1/as, -, 1/a,. We call P*(x) the reciprocal of P(x). Now denote the reciprocals of P, (x) and
Py(x) by P;(x) and P;(x), respectively. It is known from the theory of linear recurrence that

S g = Bl
(3) go UnX Prix)
and

~ 0 = Sk
(4) ‘ :—;0 X" = pety)

for some polynomials R(x) and S(x).
[tis quite clear from (2), (3) and (4) that

- n . RxSIx) _ _Tix)
(©) E; WnX = PR Pit)  PElxIPix)

which reveals that {W,,} is also a linear recurrence sequence. It is easy to prove that if P, (x) denotes the auxili-
ary polynomial of {W,,}, then its reciprocal 77 (x) obeys

(6) Prix) = PE(x)PH().

It is clear that 1/A, and 1/A, are the roots of P}(x) and Pj(x) with minimum absolute value, so that
min (1/A,, 1/A,) is the root of P} (x) with minimum absolute value. But, since P}, (x) is the reciprocal of
P, (x), Bom (\,, A, ) is the dominant root of Py, (x). This together with the lemma proves

. Wn+
lim 2211 = )\ .
n—ee

We state below some particular cases of the above theorem,

Theorem 2. Let{up},-p be alinear recurrence sequence

Un+1 = UptlUpy, Ug=0 wdg=uwp=uz=-=u=1 rel.

Let g, 7 denote the first convolution sequence of {un } ::0

oo

Uy Z

n=0
n
(7) 9n1 = D, Uklin-k
k=0
and g, , the % convolution fu,, = 9n,0)
n
(8) In,r = Z Ik, r-1Un-k -
k=0

Then lim  Up+7/up exists and
nz e
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. + .
nllm = = lim
+ e Uy N g,
foreveryre Z°,

Proof. The auxiliary polynomial for {u,,},_, is x™71 — x" — 1. We will first prove that the root with lar-

gest absolute value is real. Denote the auxiliary polynomial by
Pylx)=x"T—x"-1.
Clearly, P,(1) = —1 < Oand P, (=)= . Further,
P, -
d__ux(x_) =+ ik"-m" >0

for 1 < x < e so that P,(x) =0 for 1 <x < = at precisely one point, say A,,. Itis also clear that P, (x) > 0 for
x > Ny implies

(9) ™7 S 1"+ 1l

forx > A,
Letz, be a complex root of P, (x) = O with lz,] > \,. Now, since z, is a root of P, (x) = 0,

lzp" Tl = lzp+ 11 .
But|zo| > Ay, and comparing with (9) we have

fzé”l < lzfl +11l,

a contradiction. One may also show similarly that there is no other root z, with lz,| =\, proving that A, isa
dominant root of P, (x). This proves that the limiting ratio of {u,,} exists and that

. Un+1
lim 2 =, .

n=e gy,
Further, Theorem 1 gives
nlﬁpm %,,777—7 T nS e %’r
by induction on r and the definition of g, , in (8).
Theorem 3. Iftse Z7 and t <s, then
Jim 2t =g
In,s
Proof. For the linear recurrence sequence {0,) satisfying
Up+1 = Up*tlp~y, U9 =0, Wy =u2==u =1,
define a companion sequence of polynomials
(10) Up+1(x) = xX0n(x)+ up-p(x)

uglx) =0, wqlx) =1, aslx)=x -, ux)= X1,

Denote by gn ofx) = uplx),

n
gn,10%) = 3 uklxdup_klx),
k=0
and
n
(11) Inelx) = 3 Gk -1k (x).

k=0
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One of us (K. A.) has established in [2] that
(12) —— = g, +(X).

We know from (10) that

dluperlx)  dl,(x) dTTuntx)  dlup ix)
=x +t- +

(13)
axt axt dxt7 axt
Now, (12) makes (13) reduce to
(14) On+1,¢600) =xgp, ¢() + gnr, 1 06) + g p-1(x).
Note from {11) that g, +(7) = gp, ¢ so that (14) can be rewritten as
(15) n+1,t = Gn,t " Gn-r,t* n,t-1-
Dividing (16) throughout by g, ; we get
(16) !]n+7,t = 7+ gn—r,t * gl'l,f‘7 )
n,t In,t In,t

We know from Theorem 2 that

pliM Gne1,t/9n,e = Ny and - NM gy p /gy, = "\,

so that (16) reduces to

(17) Ay = 1+-L + tim ol
AT Gne
u
But, A is the dominant root of x*7 — x" = 7 = @ so that
: 9n,t-1
lim ==— =g
o . . == gnt
This gives by induction
lim In.t - 0 for t <,

proving Theorem 3.
Corollary. 1t {u,} is the Fibonacci sequence, then

lim  Inttr o 1455
N> gnr 2
and
gn,t

lim 222 =g for t < s

We include the unproved theorem:

Theorem 4. Ii. 2 _
In+1,r9n~1,r = 9n,r = Wn.

then
: Wn+1 2
Him V:"n =27
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