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This is a dual note to the paper [1 ] . Let x^,X2, -,xn denote a sequence of zeros and ones of length n. De-
fine a polynomial of degree (n - m) > 0 as follows 

(1) am+i,n+l(d) = Y*(xi-d)l-x*(x2-(d+1))l-x* ••(xn-(d + n-1))l'Xn 

with 
&i,l(d) = 1 and am+i,n+l(d) = 0, n < m, 

where the summation is overxi, x2, —, xn such that 
n 

i=l 

Summing overxn we have the following recurrence relation 
(2) am+lyn+1 (d) = -(d + n- 1)am+l>n (d) + am>n(d), 
where 

a<0,o(d) = 1 ar,d &o.n(d) = 0, n > 0. 

Summing overx^, we have the following recurrence relation 

(3) a>m+l,n+l(d) = -d&m+l,n(d + 1) + Om,n(d+ V, 
where 

aO,o(d) = 1 and aoyn(d) = 0, n > 0. 
The following theorem establishes a relationship between the polynomials defined in (1) and Stirling numbers 
of the first kind; see Riordan [2, pp. 32-34] . 

Theorem 1. am n(1) defined in (1) are Stirling numbers of the first kind. 
Proof. From (l)ai)1(d)= 1 and from (2) 

(4) 
am+l,n+l(D ~ ~nam+l,n(1) +am,n i 

which is the recurrence relation for Stirling numbers of the first kind, see Riordan [2, p. 33]. Thus Theorem 1 
is proved. 

Using (2), (3) and (4) the following Corollary can be shown. 
Corollary, (a) am+iyn+i(Q) = amyn(1) 

(b) 
am+l,n+l(D am+l,n(2) + 0<m,n(2) 

(c) amyYl(2)- Om+i^U) = -nam+lyn(7) + Oyn^tt). 
Theorem 2. l£\$m+lyn+1(d) be a polynomial of degree (n - m) > 0 given by Park [1 ] . 
Then 

(5) Ylam+i,k+i(d)Pk+i,n+i(d) = 8m+lyn+1 with 8myVl the Kroneckerdelta. 

§m,n = h&mtn = 0, m t n, and summed overall values of k for which am+iy]z+i(d) and Pk+l,n+l (d) are non-
zero. 
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Proof. It can be verified that the polynomial defined in (1) has a generating function 

(6) .(t-d)M = £ tmam+Un+1(d), where (t-d)^ = (t-d)(t-d- 1),-(t-d- n + 1). 
m=0 

The generating function of Pm+i,n+l(d) caR De written 

(7) \n+l 

Using (6) and (7), (5) follows. This completes the proof of Theorem 2 
EXAMPLE: For/? =3, let 

(d). 

A = 

~alfl(d) 0 0 0 

&l,2(d) a<2f2(d) 0 0 
a1}3(d) a,2f3(d) d3}3(d) 0 

[cnf4(d) a2)4(d) a3t4(d) 0,4,4^)] 

1 
-d 

d(d + 1) 

0 
1 

-(2d+1) 

0 
0 
1 

\-d(d+l)(d+ 2) (3dz + 6d + 2) -3(d+1) 1 

\$ll{d) 0 0 0 7 0 

B = Ul,2(d) p2,2ffl 0 0 \ = \d 1 
\$l,3(d) $2,3(d) $3,3(d) 0 \d2 (2d+1) 
\p1)4(d) $2,4(d) fo,4ld) fo,4(d)\ 

Theny4.£ = I . 
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PROBLEMS 

GUY A, R. GUILLOT 
Montreal, Quebec, Canada 

Proposed by Guy A. R. Guillot, Montreal, Quebec, Canada, 

Prove that 

£ taiT' 1 = £ tan"' -J— 
*** F2n+1 n=i n2+n + 1 .«=* 

Proposed by Guy A R. Guillot, Montreal, Quebec, Canada. 

Show that 

(a) 

(b) 

n=l n Fn+2 

> 'El - Cog 2> , j _ 
12 2 48 

[Continued on p. 257.] 

00 

n=0 hn+2 V 
tan —ZL- \ > 1 +0.0166. 

2n+2 J TT 


