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This is a dual note to the paper [1]. Let xy, x5, -, X,, denote a sequence of zeros and ones of length n. De-
fine a polynomial of degree (n — m) > 0 as follows

(1) Uty (@) = 3 (g = d) T g = (d + 1)) 752 el — (d #0 = 1))
with
ag1(d) =1 and  Qupiqne1ld) =0, n<m,

where the summation is over x ¢, x2, -+, X, such that
n
E X; = m.
i=1

Summing over x,, we have the following recurrence relation

(2) Umt1,n+1(d) = —(d+ 0= 1)yt 1,0(d) + W,y (d),
where
agold) =1 and ag,fld) =0 n >0

Summing over x 7, we have the following recurrence relation
(3) Am+1,n+1(0) = _darn+1,n(d+ ”"'am,n(d"' 1),
where

agofd) =1 and ag,fld) =0 n >0

The following theorem establishes a relationship between the polynomials defined in (1) and Stirling numbers
of the first kind; see Riordan [2, pp. 32—-34].

Theorem 1. a,, ,(1)defined in (1) are Stirling numbers of the first kind.
Proof. From (1) as {(d) =1 and from (2)

(4) U141 (1) = =NCpt1 (1) + Ay
which is the recurrence relation for Stirling numbers of the first kind, see Riordan [2, p. 33]. Thus Theorem 1
is proved.
Using (2), (3) and (4) the following Corallary can be shown.
Corollary. (a) Unt1,n+1(0) = Qpm (1)
(b) am+1,n+1(7) = —am+1’n(2}+am’n(2)
(c) Um,nl2) = Amt1l2) = =1Gms1 (1) + G (7).

Theorem 2. LetPy,+1,,+1(d) be apolynomial of degree (n — m) > 0 given by Park [1].
Then

(5) > Amtt, ket 100)Brt1,n+1(d) = 8 pignrs With 8, , the Kronecker delta.

8mn=1,8mn=0m#n, and summed over all values of k for which a,,,+1 ¢+1(d) and B1+1,,,+1(d) are non-
zero.
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Proof. It can be verified that the polynomial defined in (1) has a generating function

®) (t-d)™ = 3 it eld), where (t—d)) = (t—d)ft—d~1)(t—d~n+1)

m=0

The generating function of B+ ,+1/d) can be written
n
(7 " = Y (t=d) "By nes(d).
m=0

Using (6) and (7), (5) follows. This completes the proof of Theorem 2.
EXAMPLE: Forn =3, let

aj((d) 0 0 0 ] 7 0 0 0
ay,2(d) az,z(d) 0 0 —d ) 0 0
A = lays(d) ap3ld) aszld) 0 = dld +1) —(2d+1) 7 0
a1,4(d) az4(d) a3 4(d) a4 4(d)| L—d(d+1)(d+2) (3d% +6d+2) -3(d+1) 1
By 4(d) O 0 0 7 0 0 0
g = |B1,2(d) B ofd) 0 0 - |d 1 0 7}
B1,3(d) By3(d) B330d) 0 d?  (2d+1) 1 0
B1,4d) B2 4(d) B3.4(d) Baqld)| {d° (302 +3d+1) 3Md+1) 1

ThenA-B=1.
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Tokcdolokok
PROBLEMS

GUY A, R. GUILLOT
Montreal, Quebec, Canada

Proposed by Guy A. B. Guillot, Montreal, Quebec, Canada,

Prove that
-1 1 o -1 1
> tan! T o tan
By n2anei n§ Font1
Proposed by Guy A. R. Guillot, Montreal, Quebec, Canada,
Show that
(a) > 1 .l 2?1
~ 12 2 48
n=1 N Fn+2
(b) - m 2 + 00166
,E, Frt2 ont2 R ’

[Continued on p. 257.]



