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1. INTRODUCTION 
Let u(n) and v(n) be two sequences of numbers defined by 

n+l _ n+1 
(1) u(n) = r-± 2 _ , n = 0, 1,2, ••• 
and ri~r2 

(2) vM = rn
1+rn

2, n = 0,1,2, 
d r2 are the roots of the equation ax +bx + c = 0. 
n that the generating functions of these sequences are 

"lM=[l+jX+jX2Y and H (x) = ( 2+±x) [l + b-x+ | * 2 ) 

where r± and r̂  are the roots of the equation ax + bx + c = 0. 
It is known that the generating functions of these sequences are 

We put 
oo 

(3) ukM = Z ^Mxn 

n=0 
and 

oo 

(4) vk(x) = "£ vk(n)xn. 
n=0 

J. Riordan [1] found a recurrence for u^(x) in the case b = c = ~a. L Carlitz [2] generalized the result of 
Riordan giving the recurrence relations foru^(x) and v^(x). A. Horadam [3] obtained a recurrence which uni-
fies the preceding ones. He and A. G. Shannon [4] considered third-order recurrence sequences, too. 

The object of this paper is to give the new recurrence relations foru^M and v^(x) such as the explicit form 
of the same generating functions. The generating functions of u(n) and v(n) for the multiple argument will be 
given, too. We use the result of E. Lucas [5]. 

2. RELATIONS OF u(n) AND v(n) 

From (1) and (2) we have 
4rzn+n+2 = A u(n)u(m) + v(n + fMm +i) + (-;/~VA (uinMm + 1) + u(m)v(n + V), i = 7,2, 

with A = (b2-4ac)/a2. 
Then it follows that 

2u(m +n+ 1) = u(n)v(m + 1) + u(m)v(n + 1) 

2v(m +n+2) = v(n + 1)v(m + 1) + Au(n)u(m), 
Since 

u(-n - 1) = -q~nu(n - 1), vhn) = -q~nv(n), 
we find the relations 

(5) u((n + 2)m - 1) = u((n + Dm - 1)v(m) - q mu(nm - 1), 

(6) vtnm) = v((n - 1)m)v(m)- qmv((n - 2)m). 
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From the identity 
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[W] 
rk!n + rk

2
n=Y, (-Vr

r^-Clr(r^rn
2)k^(rir2r, 

r=0 
if we put u(n) and v(n) we get 

[k/2] 
(7) v(kn) = £ (-1)r jJly Clrqmvk~2r(n), k > 1. 

r=0 
Similarly, from _ 

2r?+1 = v(n +1) + (- Ij^y/AuM, i = 1, 2, 

and taking into consideration 

spl p +s\l 2p + m\ _ nm-1 2p +m I m+p — 1 \ 
JL\ s j \ 2p + 2sj ' m \ P j ' 

we obtain 
[k/2] 

(8) £ ^lkl21'r T~ Cl_rqr(n+1)uh'2r(n) = \k(nh 
r=0 r 

where 
Xufn) =[u(k(n +*)-*), k odd, Akinj \v(h(n + i)), k even. 

3. GENERATING FUNCTIONS OF u(n) AND v(n) FOR MULTIPLE ARGUMENT 

The relations (5) and (6) give us the possibility to find the generating functions of u(n) and v(n) when the ar-
gument is a multiple. Indeed,we obtain from (5) 

(9) (1 - v(m)x + qmx2)u(m,x) = u(m - 1), 

where 
oo 

(10) u(m,x) = £ u((n+1)m- 1)xn. 
n=0 

From (6) we have 

(11) (1-v(m)x + qmx2)v(m,x) = v(m) - qmv(0)x, 

where 

(12) v(m,x) = ] T v((n+1)m)xn . 
n=0 

We find also 

(13) (1-v(m)x + qmx2h(m,x) = v(0)-v(m)x, 

with 
v (m,x) = v(0) + v(m,x)x. 

4. RECURRENCE RELATIONS OFuk(x) AND vk(x) 

Let us now return to (8) and consider the sum 
[k/2] 
£ A[k/2]-r _J_ ^ y £ u^2r(n)(qrx)n = £ ^ ^ n 

r=0 n=0 n=0 

which by (3), (10) and (12) yields the following relation 
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[k/2] 
A'k/2luk(x) = Ms)- Z A[k/2]~r ^ T Clrqruk„2r(qrx), 

r=l 
where 

Xfkx) = \u(k>x)> k o d d 
A f / W \v(k,x), k even. 

Similarly from (7) for v^(x) follows 
[k/2] . 

Vk(x) =v(k,x)+ T (-J)'-1 — - - ClrVk„2r(Qrx). 
r=l k ~ r 

5. EXPLICIT FORM OF uk(x) AND vk(x) 

Next we construct the powers for u(n) and v(n). From (1) and (2) we obtain 
[k/2] 

(14) &lkl2hk(n)= 2 (-DrCW(n+1)^k-2r(n), 
r=0 

and 
[k/2] 

(15) vk(n)= J2 Cr
kqmv((k-2r)n), 

r=0 
where 

VtU \V2V(t), t = 0. 

Hence we multiply each member of the equations (14) and (15) b y x n and sum from/7 =0to/? = °°. By (3) 
and (4) the following generating functions for powers of u(n) and v(n) are obtained: 

[k/2] 
Alk,2luk{xJ= ]T (-1)rCr

kqr\(k-2r,qrx), 
r=0 

and 
[k/2] 

vk(x) = £ Cr
kv(k-2r,qrx). 

r=0 
If we replace u(m,x), v(m,x) and 7(m,x) from (9), (11) and (13), we get 

*[wUkM-™-t!>W^ 
where 

and 

where 

r=0 1-v(k-2r)qrx+qkx2 

fu(k -2r- 1), k Odd, 
\Xkr H v(k~ 2r) -qrv(0)x, k even, k j= 2r 

lv(k-2r)-qrv(0)x, k = 2r, 

vkW = V — 
£o 1-v(k-2r)qrx + qkx2 

w . = P,(0)-qrv(k-2r)x, k 1= 2r, 
~(0)-qr7(k-2r)x, k = 2r. 
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A SET OF GENERALIZED FIBONACCI SEQUENCES SUCH THAT 
EACH NATURAL NUMBER BELONGS TO EXACTLY ONE 

KENNETH B.STOLARSKY 
University of Illinois, Urbana, Illinois 61801 

1. INTRODUCTION 

We shall prove there is an infinite array 

1 2 3 
4 6 10 
7 11 18 

5 
16 
29 

8 
26 
47 

15 24 39 63 

in which every natural number occurs exactly once, such that past the second column every number in a given 
row is the sum of the two previous numbers in that row. 

2. PROOF 

Let a be the largest root o f z 2 - z - 1 = 0, soa= (1 + -JU/2. For every positive integers let f(x) = lax + %] 
where [u] denotes the greatest integer in u. We require two lemmas: the first asserts that f(x) is one-to-one, 
and the second asserts that the iterates of f(x) form a sequence with the Fibonacci property. 

Lemma 1. If x and/ are positive integers and* >y then f(x) > f(y). 

Proof. Since a(x - y)> 1 we have (ax + %)- (ay + 1/z)>1, so f(x) >f(y). 

Lemma 2. Ifx and/ are integers, andy = lax + Vz], \\\enx + y = [ay + V2J. 

Proof. Write ax + 1/2 = y + r, where 0<r< 1. Then 

(1 + a)x + j = ay + ar 

so 
x+.Y + r~ j + f = ay + ar a n d aY+ \ = x + y+ J +(1-aJr.' 

Since 1 <a= 1.618 ~<2m have 0< a- 1 < | < 7 and the result follows. 
We now prove the theorem. Let the first row of the array consist of the Fibonacci numbers 1,2 = f(1), 

3 = f(2), 5 = f(3), 8 = f(5), and so on. The first positive integer not in this row is 4; let the second row be 
4,6= f(4), 10= f(6), 16= f(10), and so on. The first positive integer not in the first or second row is 7; let the 
third row be 7,11 = f(7), 18 = f(11), and so on. We see by Lemma 1 that there is no repetition. By Lemma 2 
each row has the Fibonacci property., Finally, this process cannot terminate after a finite number of steps since 
the distances between successive elements in a row increase without bound. This completes the proof. 

For the array just constructed, let an be the n number in the first column and bn the/? number in the 
second column. I conjecture that for/? > 2 the difference Z?n -an is either Sf or b\ for some/ </?. 

We comment that the fact that Fn+1 = [aFn + 1/2], where Fn is the n Fibonacci number, is Theorem III on 
p. 34 of the bonk Fibonacci and Lucas Numbers, Verner E. Hoggatt, Jr., Houghton Mifflin, Boston, 1969. 


