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1. INTRODUCTION 

We shall prove there is an infinite array 

1 2 3 
4 6 10 
7 11 18 

5 
16 
29 

8 
26 
47 

15 24 39 63 

in which every natural number occurs exactly once, such that past the second column every number in a given 
row is the sum of the two previous numbers in that row. 

2. PROOF 

Let a be the largest root o f z 2 - z - 1 = 0, soa= (1 + -JU/2. For every positive integers let f(x) = lax + %] 
where [u] denotes the greatest integer in u. We require two lemmas: the first asserts that f(x) is one-to-one, 
and the second asserts that the iterates of f(x) form a sequence with the Fibonacci property. 

Lemma 1. If x and/ are positive integers and* >y then f(x) > f(y). 

Proof. Since a(x - y)> 1 we have (ax + %)- (ay + 1/z)>1, so f(x) >f(y). 

Lemma 2. Ifx and/ are integers, andy = lax + Vz], \\\enx + y = [ay + V2J. 

Proof. Write ax + 1/2 = y + r, where 0<r< 1. Then 

(1 + a)x + j = ay + ar 

so 
x+.Y + r~ j + f = ay + ar a n d aY+ \ = x + y+ J +(1-aJr.' 

Since 1 <a= 1.618 ~<2m have 0< a- 1 < | < 7 and the result follows. 
We now prove the theorem. Let the first row of the array consist of the Fibonacci numbers 1,2 = f(1), 

3 = f(2), 5 = f(3), 8 = f(5), and so on. The first positive integer not in this row is 4; let the second row be 
4,6= f(4), 10= f(6), 16= f(10), and so on. The first positive integer not in the first or second row is 7; let the 
third row be 7,11 = f(7), 18 = f(11), and so on. We see by Lemma 1 that there is no repetition. By Lemma 2 
each row has the Fibonacci property., Finally, this process cannot terminate after a finite number of steps since 
the distances between successive elements in a row increase without bound. This completes the proof. 

For the array just constructed, let an be the n number in the first column and bn the/? number in the 
second column. I conjecture that for/? > 2 the difference Z?n -an is either Sf or b\ for some/ </?. 

We comment that the fact that Fn+1 = [aFn + 1/2], where Fn is the n Fibonacci number, is Theorem III on 
p. 34 of the bonk Fibonacci and Lucas Numbers, Verner E. Hoggatt, Jr., Houghton Mifflin, Boston, 1969. 


