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The object of this note is to point out a curious kind of sequence which arises in connection with a binary 
coding of the tree diagram for the production of rabbits by Fibonacci's recurrence. 

At the left below is a standardized way of drawing the usual Fibonacci rabbit tree. At the right is a binary 
code for each level. The code is assigned by a very simple rule. On each level, a single segment | is coded by 0 
and a branched segment \f. is coded by 1. St is clear that this establishes a unique binary coding for each level 
of the Fibonacci rabbit tree (or any other tree for that matter). We suspect that this is not a new idea, but do 
not have a reference. 
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In the next table we give a summary of initial values of the binary coding, first in base 2 and then converted 
into base ten. In each case notice that the coding number for a given level can be expressed in terms of the cod-
ing for the two previous levels. 

Table 1 
Coding Numbers and Recurrences 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

(Cnh 
0 
0 
1 
10 
101 

10110 
10110101 

1011010110110 
101101011011010110101 

(Cn)lQ ~ An 

_ 
0 
1 
2 = 2i(1) + 0 
5 = 2'(2)+1 

22 = 22(5) + 2 
181 = 23(22) + 5 

5,814 = 25(181) + 22 
1,488,565 = 25(5,814) + 181 

i 12,194,330,294 = 2i3(1,488,565) + 5,8V 

We put(Cn)2 for the coding number in binary form, and (Cn)^o orAn for the coding number expressed in 
base ten. 

It is evident from the formation of the rabbit tree that the base ten coding numbers satisfy the recurrence 

(1) 
F -1 

An+2 = 2 An+i + An, n > 2, 

where Fn is the ordinary Fibonacci sequence, Fn+1 = Fn + Fn_i, with FQ = O, F± = 7. Again, from the law of 
formation it is evident that (Cn)2 has exactly Fn_± digits. Thus also 

(2) 2Bn-1>A„> 2Fn'1'\ for n > 3. 

Formula (1), together with initial values defines the sequence An uniquely. Starting with the sequence An 

we may recover the Fibonacci numbers from the formula 
An+3 ~An+1 (3) log2 Ai+2 

Special sums involving the sequence An may be found in closed form. From (1) we can get almost at once 

(4) An+3 + An+2- 1 = E 2FkAk+2, 
k=l 

> Fn Multiply each side of (1) by 2 and use the fact that Fn + Fn_± 

(5) 2FnAl+2 = 2* Mn+1 z ^n> 

n > 7. 

Fn+i. We find then 

n > 2, 

and this form of the recurrence is the clue to the proof of the next formula: 

(6) Z (-Vk2FkAk+2 = (-1)n2Fn+lAn+i, 
k=2 

n >. 2. 

We have not found a generating function for An and this is posed as a research problem for the reader. 
We have also not found the sequence An in Sloane's book [2 ] . Does any reader know any previous appear-

ance of Anl 
The process by which we have obtained An is not restricted to the standard Fibonacci sequence. Here is an-

other example yielding a different sequence with the same behavior. Define a third-order recurrent sequence 
by the recurrence 
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(7) Gn+1 = Gn + Gn„2, with Gt = G2 = G3 = I 
The reader may draw the corresponding rabbit tree and verify that the coding numbers and recurrence val-

ues in the next table are correct. 
Table 2 

Coding Numbers for £?n 

n 

T~~ 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Gn 

1 
1 
1 
2 
3 
4 
6 
9 

13 
19 
28 

(Dnh 

0 
0 
0 
1 

10 
100 

1001 
100110 

100110100 
1001101001001 

(Dnho - Bn 
_ _ . _ 

0 
0 
1 
2 = 2(1)+ 0 
4 = 2(2)+ 0 
9 = 2(4)+1 

38 = 4(9)+ 2 
308 = 8(38)+4 

4,937 = 16(308)+ 9 
158,022 = 64(4,937)+ 38 

Here it is evident that the law of formation is 

(8) Bn+3 = 2Gn~1Bn+2 + Bn, n > 3. 

Again sums such as (4) and (6) can be established. 
It appears that the behavior of these sequences can be predicted to follow in similar fashion for other recur-

rent sequences for which we can draw a suitable tree. 
Recalling that the Lucas numbers are related to the Fibonacci numbers by the formula Ln = Fn_i + Fn+1, 

we see that we can devise a Lucas rabbit tree by adding together two Fibonacci trees. We can call this method 
allowing twins to occur once in the Fibonacci tree. It is then evident that the binary coding must correspond 
t 0 P 
(9) (En)2 = 2 n-3(Cn)2 + (Cn-2)2 , 
and we have the associated sequence Hn = (En)iQ satisfying 

(10) Hn 
pFn-3 A + A 

in terms of our original coding. The corresponding Lucas rabbit tree is exhibited on the following page. 
Because we start the twinning at level 3, we have defined (E3)2 = 1 and //? = (£3)10 = 1 which is consis-

tent with H3 = 2F°A3 + At = 1 + 0=1. 

We make some further remarks about the coding of the original Fibonacci rabbit tree. The sequence defined 
by (11) 
satisfies 
(12) 
because 

Un = 2^'*- 1 

^n+l 

Un+2 

= lFn-lj 

2Fn-1Un+1+Un 

>Fn-l 1 2Fn-1Un+1 + U„ Un+2 = 2~nT1 - 1 = 2~n~U2 n - 1)+2 - , - * un+1 . un, 
and so Un is another solution of the equation (1). 

In fact Un and An can be found as numerator and denominator, respectively, of the partial convergents of 
the continued fraction 

(13) 1+ ~ 
1 1 1 1 1 

2+ 2+ 4+ 8+ 32+ 256+ 

where the terms are defined from 2 n . Thus the partial convergents of (13) turn out to be: 
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(14) 

The sequence of'Values 

^» = i .3 • _? 1 1 255. 819J 
A n ' 2' 5 ' 22 ' 181 ' 5814 ' ' 

1 = 1 . 5 

|i= 1.4090909-

255 - 1.408839779-181 

8191 
5814 1.408840729-

^ g g = M08840729-. 

suggests that there exists a limit of the form 

( 1 5 ) J T o o f = J l^oo ^ - = 1,40884073-

which would be somewh at analogous to the well-known limit 

(16) H m ^ ^ t l = LtJE = 2.236068+1 = ,.6,30339+ 

Formula (15) would also yield the asymptotic formula 

(17) An ~ ( 0 . 7 0 9 8 0 3 4 4 2 - ) ^ - ' as n - ~ . 

Davison [1] has just proved that with a = (1 + \J5)/2 then 

°^ 1 _ 1 1 1 T 1 1 (18) T(a) *-* 9[na] 1+ 2+ 2+ 4+ 8+ 32+ •• 
n=l * 

is transcendental. This remarkable result combines two things, the equivalence of the series and continued 
fraction, and the fact that the number so defined is transcendental. T(a) is the reciprocal of the continued 
fraction in (13), so we have the transcendental limit 

(19) ,im i « = 1 i i i L 1 = V _J Mm hi = E -7^7 = 0.709803442 Un 1+ 2+ 2+ 4+ 8+ 32+ - *-; 0[na] 
n n=1 <£ J 

with a = (1 + \j5)/2, end where square brackets denote the greatest integer function. 
So far we have restricted our attention to binary coding. We return now to Table 1 and consider ternary 

coding. Actually what we do is to interpret the numbers (Cn)2 = (Cnh
 as if tneY were in ternary rather than 

binary form. Translating the ternary code to base ten, and writing lCn)$ = An(3), we get the following se-
quence of numbers: 
(20) An(3) = 0, 0 ,1 , 3,10, 93, 2521. 612696, 4019900977, -

and this sequence enjoys most of the properties belonging to the original sequence An = An(2) derived from 
binary coding. Thus 2521 = 33(93) + 10, 612696 = 35(2521) + 93, etc., and in general 

(21) An+2(3) = 3Fn~1An+1(3)+ An(3), n > 2. 
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As a matter of fact it is just as easy to consider the original coding with Q's and 1's as being f-ary coding, 
i.e., numbers in base t, where t = 2, 3, 4, •••. We write (Cn)t = An(t) for this form of the sequence. St is not 
difficult to see then that the formulas we developed for the binary case become in general: 

Fn-1 (22) An+2(t) = t "-'An+tftJ + AJt), n > 2, 

Fn-1-l > t , n 

An+3(t)-An+1(t) 

(23) tFn-! > An(t) > tFn^~\ n > 3, 

(24) Fn = log f An+2(t) 

n F 
(25) (t), n > I 

k=l 

(26) tFnAn+2(t) = tFn+1An+1(t) + tFnAn(t), n > 2, 

(27) J2 (-DktFkAk+2(t) = (-1)ntFn+lAn+l(t), n > 2, 
k=2 

and in place of the sequence Un we have the corresponding extension 

(28) Un(t)= tFn-*-1, 
which satisfies the recurrence 

(29) Xn+2(t) = t^-iXn+iftt + XJt), 
as an extension of (1). 

We also have an asymptotic result of the form 
An(t) - K*tFn~\ n -> ~ . 

We shall find K in terms of continued fractions. 
The continued fraction (13) with partial convergents (14) has a very interesting form in the general f-ary 

case: 

(30) MJ - - <t-i)+i=-l _L JL J- _ L _ . 
An(t) f l + tl+ t2+ t3+ _ tFn,3 

For t = 3 we have the case 

(31) 2 + £• J J - - J - — L - = 2.602142009 ••• 
3+ 3+ 9+ 27+ 243+ •• 

The reciprocal of this is 0.3842987802 •••, and it is now remarkable to note that if we extend the series of 
Davison (18) in the obvious way, we find that 

no\ V — — = i + J - + - L + J - + J - + J - + J - + - =• 0.3842987802 ••• 
\61' iL j[na] 3 gJ 3 4 36 28 39 311 

n=l 

and this is correct to at least as many decimals as shown since we have calculated the sum to 20 terms and the 
2\st term adds only about 1.798865 x W16 to this. 

It is natural to conjecture that Davison's theorem can be extended to show that this number also is trans-
cendental and moreover that the limit of (30) as/7->°° is probably transcendental for every natural number 
t>2. 

Some of the first few partial convergents of (31) are: 

m \ ? § ?6_ i l l 6560 1594322 
' 3 ' 10' 93 ' 2521 ' 612696 ' **' " 

The general theorem which we claim is that for the continued fraction in (30), 
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where the exponents in the continued fraction are the successive Fibonacci numbers. 
The first few partial convergents of the general continued fraction in (30) are: 

U4(t) _ t2_ j U5(t) _ ^_j UjM _ t
S - 1 

*4M~ t ' A5(t)~ t2+1' A6(t)~ t4 + t2 + t 

UjM = t8-1 U8(t) _ t 1 3 - l 

A7!t) t7 + tS- + t4+t2 + J ' A8(t) " t12 + t10 + t9 + t7 + t5 + t4 + t2 + t > 

etc., where, of course, the numerator is t n~1 - /, and the exponents of the t's in the denominator are pre-
cisely the powers of 2 appearing in the original binary coding of the rabbit tree as given in Fig. 1 or Table 1. 

The first 50 values of [naj for use in writing out the series (34) are: 1,3,4,6,8,9, 11, 12, 14, 16, 17, 19, 
21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 
66, 67, 69, 71, 72, 74, 76, 77, 79, 80. This agrees with sequence No. 917 in Sloane [2], where i t is called a 
Beatty sequence because of the fact that an = fnaj and bn = [nb], where a and b are irrational with 1/a + 1/b 
= 1 makes an and bn disjoint subsequences of the natural numbers whose union is precisely the set of all nat-
ural numbers. Such sets are called complementary sequences. 

Relations (30) and (34) may be put in more attractive form. Dividing each side of (30) by t- /we get 

(35) , U"l*}
 tx = 1+ L J- -J- -J- - L ~-1 

(36) 

(t- 1)An(t) t+ t+ t2+ t3+ t5+ ... fFn„3 

and taking reciprocals on both sides we find 
ft- 1)An(t) , 1 1 1 1 1_ 

Un't) i + t+ f+ t2+ ... fi>2-3 

Then the limiting case (34) becomes more elegantly 

^ t[naj n _, ̂  Un(t) ]+ f+ t+ t2 + t3 + {5 + f8 + ... 

apparently valid for all real t > I 

Although the series diverges when t = 1, still the continued fraction makes sense, giving the familiar special 
case 
(38) J i m , |im (t~ 1>A»(t) = ± JL 1 ±... = 1±J$ 

For t = 1, the sequence An(1) = Fn so that we have in the general sequence an extension of the Fibonacci 
sequence. 

Let us now make the definition 

(39) T(x,t) = E - r - 7 

for arbitrary real t > 1 and real x > 0. 
This function has interesting properties, some of which we shall exhibit here. Takex = a - 1= 1/a, a being 

as defined before. Then the sequence of values of [na - n] = fna] - n begins: 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 
8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17,17, 18, 19, 19, 20, •. It does not seem to be tabu-
lated in Sloane [2 ] . Taking t = 2, one finds that T(a - 1,2) = 2.7098016 ••• and it seems evident that in fact 
T(a- I 2) = 2+ T(a,2). For t = 3 we find that 
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T(a- 1,3) = 1.884298779- = 1.5 + 0.384298779- = Z\l + Tla,3). 

For t =7, we find that 
T(a- 7, 7) = 1.312864454- = 7/6+ T(a, 7). 

The general result appears to be 

(40) T(a - 1, t) = - f - + T(a, t), t > 1. 

This appears to depend on the value of a being (1 + V5) /2 . Indeed, 

T(ir, 7) = 2.923976609 - and T(n- 1, 7) = 0.02083333 -
while 7/6 = 1.16666 - so that (40) does not hold. 

Here is another numerical result that may be of some interest: 

(41) T(a,a) = Z — — = 1.100412718 - . 
n=l a[na] 

Some of the partial convergents from the continued fraction are: 
A6(a) _ 11,09016995 _ i nqqinf i^ f i 
Z W " 10.09016995 ' 1 - 0 9 9 1 0 6 3 5 8 " -

Note that (11/10) = 1.1; 
A7M _ 50.59674778 _ 1 innA78^? 
Ujfal ~ 45.97871383 " 1 1 0 0 4 3 8 5 2 "" • 

Note that (50.6/46)= 1.1; 
A8<a) „ 572.2107019 _ -. i n n z i 1 o R 7 
Z T ^ J - 520.0019205" 1 - 1 0 0 4 1 2 6 7 " • 

Note that (572/520)= 1.1. 
It is interesting to note that T(afa) is just slightly larger than 1.1, suggesting this as a dominant term. 
Here is still another numerical example of (40): Lete = 2.7182818 - . 

T(a,e) = 0.438943611-, T(a - he) = 2.020920317-, e/(e - 1) = 1.581976707 - , 
so that 

T(a,e) + e/(e- 1) = 2.020920318 = T(a- he) 

as closely as we could compute the numbers. 
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