A PROBLEM OF FERMAT AND THE FIBONACCI SEQUENCE

V. E. HOGGATT, JR.
San Jose State University, San Jose, California 95192
and
G.E. BERGUM
South DakotaState University, Brookings, South Dakota 57007

1. INTRODUCTION

Fermat observed that the numbers 1, 3, 8, 120 have the following property: The product of any two in-
creased by one is a perfect square. Davenport showed that for 1, 3, 8, x to have the same property x must be
120 and that it is impossible to find integers x and y such that the five numbers 1, 3, 8, x, y have this unique
property.

In [1] and [2], B. W. Jones extends the problem to polynomials by showing

Theorem 1.1. Let w? — 2(x + 1)w + 1= 0 have afx) and B(x) as roots. Let 7, (x) = (ak — 6k)/(a— B)
Letcy(x) = 2f, (x)fr+1(x). Then the polynomials x, x + 2, c1.(x), cp+1(x) have the property that the product
of any two plus one is a perfect square.

Any enthusiast of the sequence of Fibonacci numbers would quickly observe that 1, 3, and 8 are terms of
that sequence whose subscripts are consecutive even integers. That is, they are respectively F,, F4, and Fg.
Using the Binet formula it is easy to show that the property enjoyed by 1, 3, and 8 is shared with any three
terms of the Fibonacci sequence whose subscripts are consecutive even integers. In fact, we have

(1.1) FonFonez 1= F2es
(1.2) FonFonsqg+1 = an+z
and

(1.3) Fon+2 Foprat 1= F22n+3'

One might now ask if there exists an integer x such that Fo,x + 1, Fp,40x *+ 1 and Fp,+4x + 1 are perfect
squares. In order to show that the answer is yes we proceed as follows. From (1.1) we see that
2
1= Foper— Fonfone2 = Fone1Fonez — Foun Fon+3
so that
(1.4) 4F211F271+1F271+2F2n+3 +1 = (2F2n+1F2n+2_ ”2-

Replacingn by n + 7in (1.1), we have

2
1= Fauuz* Fonr1Foned — Fone3Fontd = Fout1Foned — Fon+3 Fone2
so that

(1.5) 4F 2041 F 2012 Fone3 Foned + 1 = (2F 2002 Fone3 +1)%.

Using the Binet formulashow that an+2 = Fou+1Fon+3 — 1. Multiply both sides of this equation by 4F22n+2
to obtain 5 5 5

(16) 4F27!+1 F27,1+2F2n+3 + 7 = (2F2n+2+ 7) .

Combining (1.1) through (1.6) we have

Theorem 1.2. For n > 1, the four numbers £z, F2,42, Fop+a, and x = 4F 2,41 F2u12F2y+3 have
the property that the product of any two increased by one is a perfect square.

For n respectively 1, 2, and 3 we obtain the quadruples (1, 3, 8, 120), the result of Fermat, (3, 8, 21, 2080)
and (8, 21, 55, 37128). The authors conjecture that the value x of Theorem 1.2 is unique.
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Although three terms of the Fibonacci sequence whose subscripts are consecutive odd numbers do not have
the property of those with even subscripts we do have the following.

Theorem 1.3.Letn > 1and x =4F 5,12 F2,,+3 F2,+4 then the numbers Fo,,11, F2,,43, Fon+5 and x
are such that

Fou1Fones—1 = Fus
Font1Fonrs—1 = F5n+3
FonesFones — 1= Fhiiy
Fopp1x+ 1 = (2F2pe0Fonez + 1)°
Fonesx + 1= (2F5,,5— 1)
Fonesx +1 = (2F 243 Fansq — 1)%.

Here again the authors conjecture that the value of x in Theorem 1.3 is unique. Letting n respectively be 1,
2, and 3 in Theorem 1.3 we obtain the quadruples (2, 5, 13,480), (5, 13) 34, 8136), and (13, 34, 89, 157080).
We now turn our attention to several problems which arose in our investigation of the results of Theorems

1.2 and 1.3.
First we wanted to know if there exists an x such that

Foux—1= P?
Fontax—1= MZ
\F211+4X_7:/V2-
1f such an x exists then by eliminating that value between pairs of equations, we have
F211M2 - F2n+2P2 = Fon+t
Fouli? = FapeaP? = Lyyez
2 2
FonsolN® — FoupaM” = Fpus3
where £; is the i Lucas number. One and only one of Fp,,, F2,,+1, F2n+2 iseven. Furthermore there exists
an integer k such thatn =3k, n=3k+ 1, orn =3k + 2. 1f n = 3k then Pis odd and the first equation becomes
—1=—=Fgp+2 =Fgr+1 =1 (mod 4) which is impossible. If n = 3k + 1 the first equation becomes F6k+2/l/}’2—
Fsp+4P? = Fgpe3. Since Fgpez is even either M and P are both even or both odd. If both are even then 0 =
F6r+3 =2 (mod 4) which is impossible. If both are odd then —2 = F41,+2 — Fgp+4 =2 (mod 8) which is im-
possible. When n = 3k + 2 M is odd and the first equation becomes 3 = F4p+4 = Fgp+5 = 7 (mod 4) which is
impossible. Hence, the first equation is never solvable. Therefore no x can be found which satisfies the original
system of equations. Following an argument similar to that given above it is easy to show that
Faull? = Fa,4P% = Lopes
is impossible.
Next we tried to determine if more than one solution exists for
Foux+1 = P?
(A) Foupax +1=M?
Fonrax +1 = N?
By &liminating the x we see that a necessary condition for a solution is
2
’EZHMZ_ Fout2P® = —Fou+q
' 2
(A Foull? = Fap14P” = ~Lonsz .
2 -
Fon+2N* — ’L2n+4MZ = —Fon+3
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Recognizing that the first and last equations of (A’) are essentially the same, we conclude that a necessary
condition for (A) to be solvable is that there exist a common solution of the Diophantine eguations of the
form

(1.7) FZ;’IMZ_ F2;1+2P2 = _F2n+1
and
(1.8) Foul? = FousaP? = —Loyez.

Because of the relationships that exist between Diophantine equations of the form Ax? - By2 =%(, con-
tinued fractions, and linear recurrences, we were led to consider the auxiliary polynomials

(1.9) w? = 2Fgpqwt 1 =0
and
(1.10) w? = 2F oW+ 1 = 0.

Using these auxiliary polynomials we will develop a sequence of solutions to (1.7) and (1.8). In this and future
developments we need the following lemma all of whose parts can be verified by using the Binet formula or
formulas found in [1], [2].

Lemma 1.1. Foralk=>1

(a) FuFles = Fiuy = (=1 Frpy .
(b) FrasFi—Fipy = (=18 1 Fpy.
(C) F{eF;§+3 —F]e+4/:i€2+1 = (—7)k+1L[Q+2
(d) Fulfos = Frpglfoy = (=18 1y

2. SOLUTIONS OF Fo,M? — Fp,12P% = —F o4
We first turn our attention to (1.9) whose roots throughout this section are denoted by
a= Fouri +Fo 1 and B = Fonei —~FZ .~ 1
Let 4y, = (@™ — B™)/fa— B) then {H,}m=o is given by

(2.1) Ho=0Hy =1, Hy=2F+1tHm1—Hno, m =2
and it can be verified that
(2.2) HZ = HypHmoo = 1.

With M,, = AH,,, + BHp_ 1, Py = A*H,, + B*H,,_¢ and (2.1), we see that
{ My = =M iHp2+ MaHm_q

Py = =PiHp_2+PoHpm_1 .
Requiring that (M,,,, P, ) be asolution of (1.7), provided (M4, P{) and (M5, P2) are, we have
(H2 ,+H2 = 1)Foues = 2Hp (Hin2(F2,22P1P2— F2,M1M2)
which by using (2.1) and (2.2) becomes
(2.4) F3 ot = FansaP1P2— FauMMy.

Obviously (£1, £1) is a solution of (1.7) and Lemma 1.1, part (a), tells us that (£F 5,43, £F2,,+2) is also a
solution. Checking the sixteen possible combinations respectively for (M4, P;) and (M5, P2) in (2.4) we find
only four solutions which are

{(71 1), (F2n+3v F2n+2)}/ {(71_7}/ (’E2n+3» —F2”+2)}, {(_ 1,1) (—F2n+3v F211+2)},

(2.3)

and
{(=1~1),  (=Foue3, —Fous2)} .

Each of these four solutions, when used in conjunction with (2.3), gives us a sequence {(M,,;, Py, )} =1 Of
solutions to (1.7) which, except for signs, are the same. Because of the exponentsin (1.7) we consider only
those pairs given by
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{ My = 2F2p41Mp_1— My 2
(2.5) P = 2Fp41Pm_1 — P2
where My =P;=1, My= Fp,+3,and Py =Fy,10.

Noting that the auxiliary polynomial for {Mm};jzz and {Pm}S,ZZI isw? — 2F2u4qw+ 1=0, itis easy to
show by standard techniques that

ij = [(Fy,B8+ 1)a™ — (Fo,a+ 1)8™] /la—B)
Py = l(~Fon_1B+ 1)a™ = (~Fan_gat 1)8™]/(a—B)

Let Dy = Mjl — My 1My 11 be the characteristic of { M,, }m=1- Using (2.6), it can be shown that

(2.6)

(2.7) Dyp = Foue1Fonsz and  Dp = —Fp, Foueg
or
(2.8) FonDy = =Fou120p .
Using
(2.9) { Mp_2 = 2F gy 1tMpm-1 — My,
Po-2 = 2F2u41Pm_1 — Py

together with part (b) of Lemma 1.1 it can be verified that { (¥,,,, P,, )}~ is another sequence of solutions
of (1.7) where

My = 2Fops Mg — My
(2.10) { m 2n+1Mm-1 m-2

ﬁm = 2F2n+1;m—1 - 'TJm—Z
with _ _ B B
Mj:P1-_- 7, M2=-—F2n and P2=F2”_1.
The sequences { M, }ym=1 and { P, } ;= are called conjugate sequences of {#,,} ym=7 and {#,, };m=7. Since
the auxiliary polynomial for {M,,} =1 and {P,,, } =1 is

w2 = 2Fpi +1 =0,
we see by standard technigues that

(2.11) {/T”m = [(=Fpn438+ 1)a™ — (—Fp,43a+ 1)8™] /(a - B)
. L ’Em = [(—Fone2B+ 1)a™ - (—Fop4pa+ I}ﬁm]/(a_ﬁ)

(2.12) Dlﬁ = Fouri1Fontz = Dy

and

(2.13) DT) = _FZH F2n+1 = DP-

3. SOLUTIONS OF Fo,N? — Fp,04P? = —Lopes
We now turn our attention to (1.10) whose roots throughout this section are denoted by
Y= Fousz#F2 ,,—1 and 6= F2n+2—\//%+2—~-7-_,
Let
Hoy = (" =8")/(y-8)

then{ H,, } = is given by
(3.1) Ho=0 Hy=1 Hp=2FmmizHmi—Hmos m>2
and it can be shown that
(3.2) HE f = HppHg = 1.

Let (N4, P1), (N2, P2) be solutions of (1.8). Let {(V,, Py )} m=3 be given by
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(3.3) { Niw = =NiHpy 2+ NoHp g

P = ~PiHm2 + PoHp 1
Let (N, P, ) be asolution of (1.8). By an argument similar to that given in Section 2, we find
(3.4) Lon+2F2n+2 = F2n+aP1P2~ F2ulN N2,
Lemma 1.1, part (c), yields (£Fp,+3, £F2,+1) as a solution of (1.8). Obviously (1, 1) is a solution of
(1.8). Letting these pairs be (N4, P4 ) and (N 5, P2 ) we obtain sixteen possible values for (3.4). Using
(3.5) Lops2Fon+2 = FoustaFontt + F2uFon+s

it is easy to check that only four solutions exist which, except for signs, are the same. The solution we use
gives rise to

(3.6) {/VV” = 2F 242N o1 = N2
Pn = 2F2u+2Pm-1 — Pm-2

»

where
Ny=Py =1 Ny=—Foue3 and Py = Foupq.

Furthermore,
(3.7) { Ny = [(=L2p38+ 1)y™ = (—Lopezy+ 1)8™] /(y—8)

' P = [(=Loyr18 + Y™ = (=Layrgy+ 1)8™] /(y=5)
(3.8) ON = Fou+alons2, Op = —F2ulous2
and
(3.9) FZHDN = ‘F271+4DP'

The conjugate sequences{/T/m};;’,zl and {pm}f;:1 are given by
{ ﬁ/m = 2F271+2/T/m—1 - /T/m~2

3.10) 'Em = 2F2n+273m—1 - 'Em—Z

with _ _ _ _

Ny=Py =1 Ny=Lloyg3 and Py =Ly,
Using Lemma 1.1, part (d), it can be shown that {(V,,, P, )} ;=1 is a sequence of solutions to (1.8). Further-
mare,

(3.11) { N = [(F2ue38 + 1)7™ = (Foue3v+1)8™] /(y—6)
' Pm = [(~F2ue18+ 1)Y" = (=Fonrgy+ 1)8™] /(y=6)
(3.12) DN = Fonvalonsz = DN
and
(3.13) Dﬁ = _F27'1L2n+2 = Dp.

Although the results of Sections 2 and 3 do not directly give a solution to (A), we can generate an infinite
sequence ofsolutions for each of the equations of (A’) by using (2.5), (2.10), (3.6) and (3.10).

4. CONCLUDING REMARKS

By eliminating the x value between pairs of equations we see that a necessary condition for

Fonerx+1 = /:7’2
(B) Fonsesx t1 = SZ
| Fonesx +1= T

or
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Fopeix — 1 = R?

(c) Fopezx—1 = s?

| Fopssx—1=T?

to be solvable is

J F2ut18? = Faus3R% = —Fansz

(B) Fourt T2 = Fopes B = —Lopss

IL F2u43T? = F2n458% = —Fousg

or

Fonsix—1= R?

(C) Foprzx—1=

Fopisx —1=T?

I
(9%}
N

to be solvable is
(F271+1S2 — Fone3 R = —Faues
(8) Font1T? = FoussR% = ~Lones
Fout3T? = FoussS? = ~Fausa

or

F2n+132 = Fon+3 R? = Fon+z
(c) Foust TP = FanssR® = Loyes
LF271+3 TZ— F2n+532 = Fon+d

Recognizing the similarity of several of the equations we are led to consider only solutions of Diophantine
equations of the form

.1) Four1S% = Faue3 B2 = FFouez
and
(4-2) F2n+1 TZ - F2n+5'qz = ?L21l+3 .

CASE I: Fp,418% = Fous3R% = #Fonus .
In this case we consider the auxiliary polynomial
w? = 2Fpppaw—1 =10
whose roots are denoted by
€ = Fou+2 +\/Fg)”_—+-2-: and 0 = Fou4p— W
Following the techniques of Section 2 it can be shown that
J’ Sm = 2F20+28m-1 + Sm-2

(4.3)
LA = 2F2,42Bm 1 *+ Rm-2

with
St = Ry = 1, S2 = Fou44, and Ro = Fou+3,
is a solution of
FZ;H'ISZ — Fou+3 HZ = —F2u42
when m is odd and
Fout1S% = F2ue3R% = Fapez
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when m is even. Furthermore

(4.4) { Sm = [(~Fzu+10+ 1)e™ — (—Fon+1€+ 7)o™] /e — o)
m = [Fon0+ 1)e™ — (Faye + 1)0™]/(e - o)

(4.5) DS = (—7)mt':2n+3 Fon+2 Op = (_7}m+1/'—2n+1 Fantz
and
(4.5) Fou+3DR = —Fon+10s.
The conjugate sequences {S S tm=1 and { m}m:_j are given by
(4.7) { fm = "2F211+2§~m~1 +§T~2
Rum = =2F2n42Rm-1+ Bm2

with _ _ _

Sy = ARy = 1, 82 = Fopey  and Ay = —Fpy.

When m is odd, (S,,, A/ is a solution of
2 2
Fout18" — Faus3 R = —Fouq2
while it is a solution of
2 2
Fous1S° — Fous3 R™ = Fous2
when m is even.

Furthermare
(4.8) {E_m = [(Foprqe+ IN=0)" — (Foppa0+ 1)—€)"]/(e— 0
By = [(Fonrset 1N=0)" = (Fauy30+ 1)(—€)™]/(e~ o)
{4.9) Dy = Dg = (—1)" Fans3 Fonsz
and
(4.10) Dg = DR = (~1)"" Fapes Fausa.

CASE Il Fpuey T2 — FonesR% = Floyss.

In this case we consider the auxiliary polynomial w? - 2F,+3w — 1 = 0 whose roots are

Y= Fauss #JF2 5t 1 and = Fons—FL 1 Sus3 ™t
Following the techniques of Section 2, it can be shown that
(@.11) { Ton = 2F2n+3Tm-1+ Tin-2 )
= 2Fou43 Rmo1t Bm-2
with
Ty =Rs=1 To = —Fopsa, and Rz = Fpue2,
is a solution of
Fous1 T2 = FouisR? = —Lonss
whenm is odd and
Fou+1 T2 ~ Fou+s HZ = Loa+3
when m is even. Furthermore
{ T = [LegE+ D™ = (Lgprgy + ETINY — £)
R = /([-2'71+2'§+ ;,)wm = ([-211+2¢’+ 7)E7M]/(¢’ - E)

{4.12)
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(4.13) D7 = (=1)" Fan+5L20+3, DR = (~1)"  Fonelones
and
(4.14) Fou+10T = —F2,450R .

The conjugate sequences {Tm};’,:j and {ﬁm },‘;:1 are given by

(4.15) {?m = "'2F2n+37—m-1 +7—m—2

Ry = —2F2n+3§m—1 +ﬁm—2
with _ _ _ _
T1 = Fi’1 =1, TZ = —L2n+4 and /?2 = "L2n+2-

When m is odd (7',,1, Rom)is asolution of

Foue1T? = Fou15R? = —Lopss
while it is a solution af

Fone1T? = FonesR? = Lopes

when m is even. Furthermore

{ Ton = [(~Fousay + D=E)™ = (—F gk + =Y )] /(Y — £

(4.8) -
R = [(Fous2 W + IN=E)" — (Fans2E + =)/ - §)
(4.9) D = D1 = (1) F2ns5L 2043
and
(4.10) DE = Dp = (— 7)m+1F2n+1 Loy+3.

In closing, we observe that if you choose m = 3 in (2.5) and (3.6) you obtain

DEC. 1977

M3 = 2Fpi1Fopss — 1= 2F2,0+ 1, P53 = 2Fpu11Fonsz—1, and N3 = —2Fp,10Fpue3— 1
which are equivalent to the values in (1.6), (1.4), and (1.5). Lettingm = 3 in (4.3) and (4.11) you obtain

83 = 2F2442F2usa +1 = 2F55—1,  R3 = 2F2uu2F2u43+1, and T3 = —2Fpu45F2,0a + 1

which are equivalent to the values in Theorem 1.3.

REFERENCES

1. B.W. Jones, “A Variation on a Problem of Davenport and Diophantus,” Quarterly J. of Math., Vol. 27

(1976), pp. 349-353.

2. B.W. Jones, “A Second Variation on a Problem of Diophantus,” The Fibonacci Quarterly, to appear.

Yododoiokoiok



