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If there were an integer w such that |a2W —y| < % itwould follow that
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implying that w = u7 and that y = u4, contradicting the fact that |y — u4|= 1. On the other hand, there is an

integer x = y — u such that |ax — y| < % since
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The existence of x (and the non-existence of w) satisfying these conditions, implies that y = v, for some v € S.
Thus,

lax —y| = \fa~ Ty —auz| = (a~ 7}{y-a2u2| <
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We now find
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a”2(|1/2—a2u2]+[vza—a2v1]) < %—— + aT =al <1
so thatuy = vp € Sp.
Combining the results of Lemmas 3, 4, 5 we have

Theorem. So =81 U8y,
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A GOLDEN DOUBLE CROSTIC: SOLUTION
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“Geometry has two great treasures: one is the theorem of Pythagoras; the other, the division of a line into extreme
and mean ratio. The first we may compare to a measure of gold; the second we may name a precious jewel.”
J. Kepler. Quotation given in The Divine Proportion by Huntley (Dover, New York, 1970, p. 23).
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