(9)

$$
\overline{d(a)}=\lim _{n \rightarrow \infty} \frac{\left|I_{1}\right| n+o(n)}{\frac{n+\log (a+1)}{\log c}+o(n)}=\log (1+1 / a)
$$

and the desired conclusion follows.

REFERENCES

1. R. L. Duncan, "Note on the Initial Digit Problem," The Fibonacci Quarterly, Vol. 7, No. 5, pp. 474-475.
2. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., 1960, p. 46.
3. J. G. Van der Corput, "Diophantische Ungleichungen I: Zur Gleich Verteilung Modulo Eins," Acta Math., 193031 (378), pp. 55-56.
4. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., 1960, p. 390.
5. H. Halberstam and K. F. Roth, Sequences, Oxford, 1966, Vol. I.

ADDENDA TO ADVANCED PROBLEMS AND SOLUTIONS

These problem solutions were inadvertently skipped over for a few years. Our apologies.

FORM TO THE RIGHT

H-211 Proposed by S. Krishman, Orissa, India. (corrected)
A, Show that $\binom{2 n}{n}$ is of the form $2 n^{3} k+2$ when n is prime and $n>3$.
B. Show that $\binom{2 n-2}{n-1}$ is of the form $n^{3} k-2 n^{2}-n$, when n is prime.

$$
\binom{m}{j} \text { represents the binomial coefficient, } \frac{m!}{j!(m-j)!} .
$$

Solution by P. Tracy, Liverpool, New York.
A. The Vandermonde convolution identity is $\left.\binom{n}{m}=\Sigma^{\prime n} \begin{array}{c}n-L\end{array}\right)\binom{L}{m-k}$. Appling this to $\binom{2 p}{p}$ (using $\left.L=p\right)$, we get

$$
\binom{2 p}{p}=\sum_{k=0}^{p}\binom{p}{k}^{2}=2+\sum_{k=1}^{p-1}\binom{p}{k}^{2} .
$$

Since p is a prime, $p \left\lvert\,\binom{ p}{k}\right.$ for $k=1,2, \cdots, p-1$. Now

$$
\binom{p}{k}^{2} \equiv p^{2} \quad \frac{(p-1)(p-2) \ldots(p-k+1)^{2}}{k!}\left(\bmod p^{3}\right)
$$

Also $(p-i) / i \equiv-1(\bmod p)$ and so

$$
\frac{1}{p^{2}} \sum_{k=1}^{p-1}\left(\frac{p}{k}\right)^{2} \equiv \sum_{k=1}^{p-1} \frac{1}{k^{2}} \equiv 2 \quad \text { quad. res. }(\bmod p)
$$

(since every quadratic residue $\bmod p$ has exactly two roots, $\pm a$). Let g be a primitive root, $\bmod p$, then the quadratic residues are

$$
1, g^{2}, g^{4}, \cdots, g^{\frac{p-3}{2}}
$$

To find the sum of the quadratic residues, we use the geometric sum formula to obtain (g $\left.g^{p-1}-1\right) /\left(g^{2}-1\right)$. Note that $p>3$ implies $g^{2}-1 \not \equiv 0(\bmod p)$. Hence Σ quad. res. $\equiv 0(\bmod p)$. Therefore
[Continued on page 165.]

$$
2 p^{3} \left\lvert\, \sum_{k=1}^{p-1}\binom{p}{k}^{2} \quad\right. \text { and } \quad\binom{2 p}{p} \equiv 2\left(\bmod 2 p^{3}\right)
$$

