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@) T = i 117 +ofr)
o= M +log(a+1) +oln) = log {1+ 1)

logc
and the desired conclusion follows.
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ADDENDA TO ADVANCED PROBLEMS AND SOLUTIONS

These problem solutions were inadvertently skipped over for a few years. Our apologies.

FORM TO THE RIGHT
H-211 Proposed by S. Krishman, Orissa, India. (corrected)
A, Show that (2: > is of the form 2n°k +2 when n is prime and n > 3.

B. Show that <2” - 2) is of the form nZk — 2n2 — n, when n is prime.

n—1
(rJ”) represents the binomial coefficient, /—;(7”’_,/7
Solution by P. Tracy, Liverpool, New York.
A. The Vandermonde convolution identity is () = = (" L L Y. Appling this to (%7 (using L = p), we
ottty i () - 2" 7)(,, ). Aaaingthis o (%) g L =5
p .2 p-1 2
2p =y p) =2+ (?
k k :
(%) k=0 ( b=t )
Sincepisaprime,pi (’i)fork= 1,2,-,p— 1. Now ,
2 - -2)np—k+
(2 = p2 (p—1ip 2}k! (o=k+1) * (modp?).
Also (p —i)/i=—-1 (mod p) and so
" p-1 2 pty
= 3 (1]:) = = = 2 quad. res. (mod p)
P° k=1 k=1 k
(since every quadratic residue mod p has exactly two roots, _ta). Let g be a primitive root, mod p, then the quadratic
residues are _p-3

1,9% 9% .02
To find the sum of the quadratic residues, we use the geometric sum formula to obtain (gp'J - H/(gz — 7). Note
thatp > 3 implies g% — 7#0 (mod p). Hence = quad. res. = 0 (mod p). Therefore

p-1 3
3 P 2p\ _ 3
[Continued on page 165.] 2p ‘k—zi (¥) and < p>- = 2 (mod 2p7).



