ELEMENTARY PROBLEMS AND SOLUTIONS

Solution by Paul S. Bruckman, Concord, California.

Since $2m \le \log (k\sqrt{5})/\log a < 2m + 1$, it follows that $a^{2m} \le k\sqrt{5} < a^{2m+1}$; hence, $a^{2m} - b^{2m} = a^{2m} - (-a^{-1})^{2m} < k\sqrt{5} < a^{2m+1} - (-a^{-1})^{2m+1} = a^{2m+1} - b^{2m+1}$,

= 0

i.e.,

$$F_{2m} < k < F_{2m+1}$$

Since $\{F_n\}_1^{\infty}$ is a non-decreasing sequence of positive integers, it follows that $F_n \leq k$ for $n = 1, 2, \dots, 2m$, i.e., for 2m (distinct) values of n.

Also solved by A. G. Shannon and the Proposer. Cont. from P. 183

Therefore,

$$d_{ij} = \sum_{k=1}^{n} c_{ik} a_{kj}^{T} = \sum_{k=1}^{n} {\binom{k-1}{i-k} \binom{j-1}{k-1}} .$$

The effective limits of this summation are from $k = 1 + [\frac{1}{2}i]$ to min. (*i,j*). It will be convenient, however, to consider the upper limit to be equal to *i*; if i > j, the extra terms included vanish in any event. Therefore,

$$d_{ij} = \sum_{k=[\frac{1}{2}i]}^{i-1} {\binom{k}{i-1-k}} {\binom{j-1}{k}} = \sum_{k=0}^{[\frac{1}{2}(i-1)]} {\binom{i-1-k}{k-1-k}} {\binom{j-1}{i-1-k}}$$

For convenience, let i - 1 = r, j - 1 = s.

Therefore,

$$d_{ij} = \theta_{rs} = \sum_{k=0}^{[\frac{l}{2}r]} {r-k \choose k} {s \choose r-k} ;$$

let

Then

$$y = \sum_{r=0}^{\infty} \theta_{rs} x^r$$

$$y = \sum_{r=0}^{\infty} x^r \sum_{k=0}^{\lfloor \frac{j}{2}r \rfloor} {\binom{r-k}{k}} {\binom{s}{r-k}} = \sum_{k=0}^{\infty} \sum_{r=2k}^{\infty} x^r {\binom{r-k}{k}} {\binom{s}{r-k}} = \sum_{k=0}^{\infty} x^{2k} \sum_{r=0}^{\infty} x^r {\binom{r+k}{k}} {\binom{s}{r+k}}.$$

Thus,

$$y = \sum_{k=0}^{\infty} {\binom{s}{k}} x^{2k} \sum_{r=0}^{\infty} {\binom{s-k}{r}} x^r,$$

by rearranging the combinatorial terms. Then,

$$y = \sum_{k=0}^{\infty} {\binom{s}{k} x^{2k} (1+x)^{s-k}} = (1+x)^s \sum_{k=0}^{\infty} {\binom{s}{k}} \left(\frac{x^2}{1+x}\right)^k = (1+x)^s \left(1+\frac{x^2}{1+x}\right)^s$$

or: (2)

Therefore, d_{ij} is the coefficient of x^{i-1} in $(1 + x + x^2)^{j-1}$. From this, we may deduce that the d_{ij} 's satisfy the following recursion:

 $y = (1 + x + x^2)^s$.

(3)
$$d_{i+2:j+1} = d_{ij} + d_{i+1:j} + d_{i+2:j}$$
 $(i, j \ge 1); d_{1:j} = 1, d_{2:j} = j-1$ $(j \ge 1); d_{i:1} = 0$ $(i > 1).$

We may readily construct a matrix (of unspecified dimensions), whose j^{th} column is composed of the coefficients of $(1 + x + x^2)^{j-1}$, written in correspondence to the ascending powers of x, beginning with x^0 . For any given j, $d_{ij} = 0$ for all $i \ge 2j$ (since $(1 + x + x^2)^{j-1}$ contains (2j - 1) non-zero terms).

Also solved by the Proposer.

187