Solution by Paul S. Bruckman, Concord, California.
Since $2 m \leqslant \log (k \sqrt{5}) / \log a<2 m+1$, it follows that $a^{2 m} \leqslant k \sqrt{5}<a^{2 m+1}$; hence,

$$
a^{2 m}-b^{2 m}=a^{2 m}-\left(-a^{-1}\right)^{2 m}<k \sqrt{5}<a^{2 m+1}-\left(-a^{-1}\right)^{2 m+1}=a^{2 m+1}-b^{2 m+1}
$$

i.e.,

$$
F_{2 m}<k<F_{2 m+1}
$$

Since $\left\{F_{n}\right\}_{1}^{\infty}$ is a non-decreasing sequence of positive integers, it follows that $F_{n} \leqslant k$ for $n=1,2, \cdots, 2 m$, i.e., for $2 m$ (distinct) values of n.
Also solved by A. G. Shannon and the Proposer.

$$
\text { Cont. frem P. } 183
$$

*

elsewhere.
Therefore,

$$
d_{i j}=\sum_{k=1}^{n} c_{i k} a_{k j}^{T}=\sum_{k=1}^{n}\binom{k-1}{i-k}\binom{j-1}{k-1}
$$

The effective limits of this summation are from $k=1+[1 / 2 i]$ to min . (i, j). It will be convenient, however, to consider the upper limit to be equal to i; if $i>j$, the extra terms included vanish in any event. Therefore,

$$
d_{i j}=\sum_{k=[1 / 2 i]}^{i-1}\binom{k}{i-1-k}\binom{j-1}{k}=\sum_{k=0}^{[1 / 2(i-1)]}\binom{i-1-k}{k}\binom{j-1}{i-1-k}
$$

For convenience, let $i-1=r, j-1=s$.
Therefore,

$$
d_{i j}=\theta_{r s}=\sum_{k=0}^{[1 / 2 r]}\binom{r-k}{k}\binom{s}{r-k} ;
$$

let

$$
y=\sum_{r=0}^{\infty} \theta_{r s} x^{r}
$$

Then

$$
y=\sum_{r=0}^{\infty} x^{r} \sum_{k=0}^{[1 / 2 r]}\binom{r-k}{k}\binom{s}{r-k}=\sum_{k=0}^{\infty} \sum_{r=2 k}^{\infty} x^{r}\binom{r-k}{k}\binom{s}{r-k}=\sum_{k=0}^{\infty} x^{2 k} \sum_{r=0}^{\infty} x^{r}\binom{r+k}{k}\binom{s}{r+k} .
$$

Thus,

$$
y=\sum_{k=0}^{\infty}\binom{s}{k} x^{2 k} \sum_{r=0}^{\infty}\binom{s-k}{r} x^{r}
$$

by rearranging the combinatorial terms. Then,

$$
y=\sum_{k=0}^{\infty}\binom{s}{k} x^{2 k}(1+x)^{s-k}=(1+x)^{s} \sum_{k=0}^{\infty}\binom{s}{k}\left(\frac{x^{2}}{1+x}\right)^{k}=(1+x)^{s}\left(1+\frac{x^{2}}{1+x}\right)^{s}
$$

or:
(2)

$$
y=\left(1+x+x^{2}\right)^{s}
$$

Therefore, $d_{i j}$ is the coefficient of x^{i-1} in $\left(1+x+x^{2}\right)^{j-1}$. From this, we may deduce that the $d_{i j}$'s satisfy the following recursion:
(3) $\quad d_{i+2: j+1}=d_{i j}+d_{i+1: j}+d_{i+2: j}(i, j \geqslant 1) ; d_{1: j}=1, d_{2: j}=j-1(j \geqslant 1) ; d_{i: 1}=0 \quad(i>1)$.

We may readily construct a matrix (of unspecified dimensions), whose $j^{\text {th }}$ column is composed of the coefficients of $\left(1+x+x^{2}\right)^{j-1}$, written in correspondence to the ascending powers of x, beginning with x^{0}. For any given $j, d_{i j}=$ 0 for all $i \geqslant 2 j$ (since $\left(1+x+x^{2}\right)^{j-1}$ contains ($2 j-1$) non-zero terms).

Also solved by the Proposer.

