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H-281 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Consider matrix equation 
(1 7 OY /An Bn Cn\ 

(a) \1 1 1 \ =[Dn En Gn\ (n > 1). 
\0 1 7 / \Hn ln Jn] 

Identify An, Bn, Cn, -,Jn. 
Consider matrix equation 

(0 7 OY JAn' Bn' Cn<\ 
(b) 7 0 7 = Dn' En* Gn'\ (n > 1). 

\0 7 0] \Hn< ln' Jn>) 

Identify An',Bn\ Cn\ -,Jn'. 

H-282 Proposed by hi. W. Gould and W. E. Greig, West Virginia University. 

Prove 

£ a*>-1 & a2k-1 
k odd 

where a = (1 + ̂ j5)/2, and determine which series converges the faster. 

H-283 Proposed by D. Beverage, San Diego Evening College, San Diego, California. 

Define f(n) as follows: 
\n+k 

k=0 V X 

Express f(n) in closed form. 

H-284 Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

(A generalization of R. G. Buschman's H-18) 
Show that 

n 

(a) £ [iVrkLm-rk = 2nFm or (FT + L r h (2Fr)n 

k=0 \ * (Umbral notation) 
188 
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(b) £ {iVrkLm-rk = 2nLm+2L« or (L' + L')"* {2Lr)n+2L» 
k=o v ; 

n I \ (2nL -2Ln) 
(C) £ [l)FrkFm-rk = •*" ' ' 

Note. The generalization is valid for all Type I quadratic real fields, i.e, for Z7 = 5 , 1 3 , 2 9 , 5 3 , 6 1 , - . 

Remark on Problem H-123 by Henry Gould, West Virginia University. 

The proposer's solution, Fibonacci Quart. 1 (1969), No. 2,177-178, uses Stirling number expansions of factorials 
and powers. Since, however, it is true that 

(1) Y $(m)S(k) = dk fC) k t n, 
L~s n m n { 1, k = n, 

then, for perfectly arbitrary Fy,, and Fibonacci numbers in particular, 
n m n n n 

E. E < m ; ^ = E Fk £ s^sw - £ Ffe5; - F„ 
m=0 k=0 k=0 m=k k=0 

as desired. It is also true that 

(2) y s(m¥k) = sk , 
*~i n m n 

so by the same argument we have the dual formula to the original problem: 
n m 

(3) £ E s(n
m¥^Fk = F„, 

m=0 k=0 

and, what is more interesting, this and the original formula hold for any sequence [Fn, n > 0), the Fibonacci num-
bers really having nothing whatever to do with the truth of the formulas. 

Relations (1) and (2) are the standard orthogonality relations for the two kinds of Stirling numbers, and are im-
plied by the two expansions 

n 
(4) 

and 

(5) 

where 
(x)n = x(x- 1)(x-2)."3-2-1, with (x)0 = 1. 

Expansions (4)-(5) of course are the ones used by the proposer in his solution of his problem. Formulas (1) and (2) 
are both in Jordan's "Calculus of Finite Differences," page 184, the same source quoted by Lind for formulas (4) -
(5). The essential point I am making is the generality of formulas (1)-(2) as opposed to the original solution. 

EDITORIAL ACKNOWLEDGEMENT. Gregory Wulczyn, Bucknell University, submitted a solution for H-265 as 
well as an extensive partial solution for H-266. 

Mn 

xn = 

= 

n 

k=0 

S(n,k)xk 

0 

$(n,k)(x)k > 
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SOLUTIONS 
SUM SOLUTION 

H-267 (Corrected) Proposed by V. £ Hoggatt, Jr., San Jose State University, San Jose, California. 

Show that 

S(x) = £ (kn + ir-1 x—, 
n=0 "' 

where k is any integer and 0-1, satisfies 

Solution by P. Bruckman, Concord, California. 

We identify the given series as 

S(x) = exS (*) 

(1) S(x) = T (kn + ir-1 *-, . 
n=0 

In "The //-Convolution Transform/' V. E. Hoggatt, Jr., and Paul S. Bruckman, Fibonacci Quarterly, Vol. 13, No. 
4, Dec. 1975, pp. 357-68 , the following result is proved (where, to avoid confusion, we change the notation): Let 

(2) f(x) = £ ai:0x\ 
i=0 

oo 

(3) (f(x)P+1 = £ ai:jx\ 
i=0 

where f(Q)t0, / is analytic aboutx = 0. Also, let 
oo 

i=o'kl+$ 

Then 
(5) GM = f{x(GM)k}. 

In particular, let 
(6) f(x) = ex, s = /. 

Then 

i=0 i! i=0 
which implies 
(7) 
Hence, 
<*> * , , - ^ 

" ai:ki+s-l 
1 (ki+1){ _ (ki+l)1-1 

ki + s "1-^s~1 ki+1 if 

and also G(x) = S(x), as given by (1). From (5), it now follows that 
(8) exp (xSk(x)) = Six). 

Also solved by V. E. Hoggatt, Jr. 



1978] ADVANCED PROBLEMS AND SOLUTIONS 191 

USE YOUR USVIBRAL-AH 

H-268 Proposed by L Carlitz, Duke University, Qurham, North Carolina. 

Put 
n 

Sn(x) = ] r S(n,k)xk, 
k=0 

where S(n,k) denotes the Stirling number of the second kind defined by 

xn = X S(n,k)x(x-1)-(x-k+1). 
k=0 

Show that 

xsnM = £ (-ir^\sj+1 M 
j=0 

Sn+1M=x £ t^Sjfx) . 
j=0 \} ' 

More generally evaluate the coefficients C(n,k,j) in the expansion 

n+k 
xkSn(x) = X C(n,k,i)SjM (k,n>0). 

j=0 

Solution by P. Bruckman, Concord, California. 

For the sake of typographical convenience, we make a slight change in notation. LetS-i(n,k) andS2(n,k) denote 
the Stirling numbers of the first and second kinds, respectively, given by: 

(1) x<n> m x(x- l)(x-2)-(x-n + 1)= £ St(n,k)xk , 
k=0 

(2) xn = X S2(n,k)x(k) . 
fe=o 

Also, we define x^ ss 1. The following orthogonality relation is satisfied by the Stirling numbers: 

(3) 
um:n ~ 

j=m \ 
Using (1)-(3), we may derive an explicit expression for the c(n,k,j)'s as follows: 

n n r+k n r+k r+k 
xkSn(x) = £ S2(n,r)xr+k = £ S2(n,r) £ xm8r+k:m = £ S2(n,r) £ * m Z S^kJ/S^m) 

j=m =0 m=0 r=0 m=0 

n r+k j n r+k 
£ S2(n,r) £ Stfr+kJ) £ S2(j,m)xm = £ S2(n/) £ Si(r+kj)SjM 
r=0 j=0 m=0 r=0 j=0 

£ SjM itS2(n,r>Si(r + k,j), 
j=0 r=M 
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where M = max (j - k, 0). Hence, 

(4) c(n,k,j) = T< $2 (n/)Si (r + k,j). 
r=M 

A more elegant algorithm for computing c(n,k,J) may be derived by employing the umbral calculus, whereby Sj(x) 
is replaced by SJ, and S is treated as an algebraic quantity. Returning to one of the relations preceding (4), and re-
placing true equality by "umbral equality," denoted by the symbol " - , " we then have: 

YL T~f~fe. Yl Y^K. YL 

xkSnM = Z S2("S) E $t(r + KJ)SjM = £ S2(n,r) £ Sttr + kjW = £ S2(n,r)s(r+h) 
r=0 j=0 r=0 j=0 r=0 

= S(h> J2 S2(n/)(S-k)^ = S^(S-k)n. 
r=0 

More precisely, we have the generating function: 

(5) £ c(n,k,j)uj = u^(u-k)n. 
3=0 

An alternative expression, derived by expanding u' ' in terms of Si (kj)'s, is the following: 

N 
(6) c(nXi) =Y1 (n

r)(-k^l(kJ-r)f 
r=MX } 

where M has been previously defined and N = min (j,n). Using the fact 

(7) Si (In) = bn:1) 

we find in particular, from (6): 

c(n,1j) = £ {n\hDrS1(hi-r)f 
r=0 ^ ' 

where the summation possibly includes undefined terms, which we define to be vanishing terms. Thus, 

c(n,1,Q) = fy(-1}°Si.(f,OJ = StdO) = 0; c(n,l,n + 1) = fyf-irStdV = (-1)nSi(1,V = (-1)n; 
if 1 </ </7, 

c{n,1j) = Z (*)(-»rSl(V-r) = L l t ^ • 
r=j-l 

Therefore, in all cases (i.e., \oxj = 0, 1, •>, n + 1), 

(8) c<n,1j) - (-f)f-1 [. »^ , 

where the binomial coefficients r \ are defined to vanish whens < 0 ors >r. Hence, 

n+l n 

o) / w - j f - r ' f ' l ^ - E h)-D>sj+1M. 
By the well known technique of binomial inversion, 

(10) Sn+1M = x f ) (")SjM. 
j=0 

Also solved by F. Howard and the Proposer. 


