GENERALIZED EULERIAN NUMBERS AND POLYNOMIALS

L. CARLITZ

Duke University, Durham, North Carolina 27706 and
V. E. HOGGATT, JR.

San Jose State University, San Jose, California 95192

1. INTRODUCTION

Put
(1.1)

$$
\sum_{k=0}^{\infty} k^{n} x^{k}=\frac{A_{n}(x)}{(1-x)^{n+1}} \quad(n \geqslant 0)
$$

It is well known (see for example [1], [2, Ch. 2] that, for $n \geqslant 1, A_{n}(x)$ is a polynomial of degree n :

$$
\begin{equation*}
A_{n}(x)=\sum_{k=1}^{n} A_{n, k} x^{k} \tag{1.2}
\end{equation*}
$$

the coefficients $A_{n, k}$ are called Eulerian numbers. They are positive integers that satisfy the recurrence
(1.3)
and the symmetry relation
(1.4)

$$
A_{n+1, k}=(n-k+2) A_{n, k-1}+k A_{n, k}
$$

$$
A_{n, k}=A_{n, n-k+1} \quad(1 \leqslant k \leqslant n)
$$

There is also the explicit formula

$$
\begin{equation*}
A_{n, k}=\sum_{j=0}^{k}(-1)^{j}\binom{n+1}{j}(k-j)^{n} \quad(1 \leqslant n \leqslant k) \tag{1.5}
\end{equation*}
$$

Consider next

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(\frac{k(k+1)}{2}\right)^{n} x^{k}=\frac{G_{n}(x)}{(1-x)^{2 n+1}} \quad(n \geqslant 0) \tag{1.6}
\end{equation*}
$$

We shall show that, for $n \geqslant 1, G_{n}(x)$ is a polynomial of degree $2 n-1$:

$$
\begin{equation*}
G_{n}(x)=\sum_{k=0}^{2 n-1} G_{n, k} x^{k} \tag{1.7}
\end{equation*}
$$

The $G_{n, k}$ are positive integers that satisfy the recurrence
(1.8) $G_{n+1, k}=1 / 2 k(k+1) G_{n, k}-k(2 n-k+2) G_{n, k-1}+1 / 2(2 n-k+2)(2 n-k+3) G_{n, k-2} \quad(1 \leqslant k \leqslant 2 n+1)$
and the symmetry relation
(1.9)

$$
G_{n, k}=G_{n, 2 n-k} \quad(1 \leqslant k \leqslant 2 n-1) .
$$

There is also the explicit formula

$$
\begin{equation*}
G_{n, k}=\sum_{j=0}^{k}(-1)^{j}\binom{2 n+1}{j}\left(\frac{(k-j)(k-j+1)}{2}\right)^{n} \quad(1 \leqslant k \leqslant 2 n-1) \tag{1.10}
\end{equation*}
$$

The definitions (1.1) and (1.6) suggest the following generalization. Let $p \geqslant 1$ and put

$$
\begin{equation*}
\sum_{k=0}^{\infty} T_{k, p^{n}}^{n} x^{k}=\frac{G_{n}^{(p x)}(x)}{(1-x)^{p n+1}} \quad(n \geqslant 0) \tag{1.11}
\end{equation*}
$$

where
(1.12)

$$
T_{k, p}=\binom{k+p-1}{p}
$$

We shall show that $G_{n}^{(p)}(x)$ is a polynomial of degree $p n-p+1$.

$$
\begin{equation*}
G_{n}^{(p)}(x)=\sum_{k=1}^{p n-p+1} G_{n, k}^{(p)} x^{k} \quad(n \geqslant 1), \tag{1.13}
\end{equation*}
$$

where the $G_{n, k}^{(p)}$ are positive integers that satisfy the recurrence

$$
\begin{equation*}
G_{n+1, m}^{(p)}=\sum_{\substack{k=1 \\ k \geqslant m-p}}^{m}\binom{k+p-1}{m-1}\binom{p n-k+1}{m-k} G_{n, k}^{(p)} \quad(1 \leqslant m \leqslant p n+1), \tag{1.14}
\end{equation*}
$$

and the symmetry relation
(1.15)

$$
G_{n, k}^{(p)}=G_{n, p n-p-k+2}^{(p)} \quad(1 \leqslant k \leqslant p n-p-k+1) .
$$

There is also the explicit formula

$$
\begin{equation*}
G_{n, k}^{(p)}=\sum_{j=0}^{k}(-1)^{j}(\underset{j}{p n+1}) T_{k-j, p}^{n} \quad(1 \leqslant k \leqslant p n-p+1) \tag{1.16}
\end{equation*}
$$

with $T_{k, p}$ defined by (i.12).
Clearly

$$
G_{n}^{(1)}(x)=A_{n}(x), \quad G_{n}^{(2)}(x)=G_{n}(x)
$$

The Eulerian numbers have the following combinatorial interpretation. Put $Z_{n}=\{1,2, \cdots, n\}$, and let $\pi=\left(a_{1}, a_{2}\right.$, \cdots, a_{n}) denote a permutation of Z_{n}. A rise of π is a pair of consecutive elements a_{i}, a_{i+1} such that $a_{i}<a_{i+1}$; in addition a conventional rise to the left of a_{1} is included. Then [6, Ch. 8] $A_{n, k}$ is equal to the number of permutations of Z_{n} with exactly k rises.
To get a combinatorial interpretation of $G_{n, k}^{(p)}$ we recall the statement of the Simon Newcomb problem. Consider sequences $\sigma=\mid\left(a_{1}, a_{2}, \cdots, a_{N}\right)_{\mid}$of length N with $a_{i} \in Z_{n}$. For $1 \leqslant i \leqslant n$, let i occur in σ exactly e_{i} times; the ordered set $\left(e_{1}, e_{2}, \cdots, e_{n}\right)$ is called the specification of σ. A rise is a pair of consecutive elements a_{i}, a_{i+1} such that $a_{i}<a_{i+1}$; a fall is a pair a_{i}, a_{i+1} such that $a_{i}>a_{i+1}$; a leve/ is a pair a_{i}, a_{i+1} such that $a_{i}=a_{i+1}$. A conventional rise to the left of a_{1} is counted, also a conventional fall to the right of a_{N}. Let σ have r rises, s falls and t levels, so that $r+s+t=$ $N+1$. The Simon Newcomb problem [5, IV, Ch. 4] , [6, Ch. 8] asks for the number of sequences from Z_{n} of length N, specification $\left[e_{1}, e_{2}, \cdots, e_{n}\right.$] and having exactly r rises. Let $A\left(e_{1}, e_{2}, \cdots, e_{n!} r\right)$ denote this number. Dillon and Roselle [4] have proved that $A\left(e_{1}, \cdots, e_{n} \mid r\right)$ is an extended Eulerian number [2] defined in the following way. Put

$$
\frac{1-\lambda}{\zeta(s)-\lambda}=\sum_{m=1}^{\infty} m^{-s}(\lambda-1)^{-N} \sum_{r=1}^{N} A^{*}(m, r) \lambda^{N-r},
$$

where $\zeta(s)$ is the Riemann zeta-function and

$$
m=p_{1}^{\varphi_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}, \quad N=e_{1}+e_{2}+\cdots+e_{n} ;
$$

then

$$
A\left(e_{1}, e_{2}, \cdots, e_{n} \mid r\right)=A^{*}(m, r),
$$

Moreover

$$
\begin{equation*}
A\left(e_{1}, e_{2}, \cdots, e_{n} \mid r\right)=\sum_{j=0}^{r}(-1)^{j}\binom{N+1}{j} \prod_{i=1}^{n}\binom{e_{i}+r-j-1}{e_{i}} \tag{1.17}
\end{equation*}
$$

A refined version of the Simon Newcomb problem asks for the number of sequences from z_{n} of length N, specification $\left[e_{1}, e_{2}, \cdots, e_{r}\right.$] and with r rises and s falls. Let $A\left(e_{1}, \cdots, e_{n} \mid r, s\right)$ denote this enumerant. It is proved in [3] that

$$
\begin{equation*}
\sum_{e_{1}, \cdots, e_{n}=0}^{\infty} \sum_{r+s \leqslant N+1} A\left(e_{1}, \cdots, e_{n} \mid r, s\right) z_{1}^{e_{1}} \cdots z_{n}^{e_{n}} x^{r} y^{s}=x y \frac{\prod_{i=1}^{n}\left(1+(y-1) z_{i}\right)-\prod_{i=1}^{n}\left(1+(x-1) z_{i}\right)}{v \prod_{i=1}^{n}\left(1+(x-1) z_{i}\right)-x \prod_{i=1}^{n}\left(1+(y-1) z_{i}\right)} . \tag{1.18}
\end{equation*}
$$

However explicit formulas were not obtained for $A\left(e_{i}, \cdots, e_{n}(r, s)\right.$.

Returning to $G_{n, k}^{(p)}$, we shall show that

Thus (1.17) gives

$$
\begin{equation*}
G_{n, k}^{(p)}=A(\underbrace{p, \cdots, p}_{n} \mid k) . \tag{1.19}
\end{equation*}
$$

$$
\begin{equation*}
G_{n, k}^{(p)}=\sum_{j=0}^{k}(-1)^{j}\binom{p n+1}{j}\binom{p+k-j-1}{p}^{n} \tag{1.20}
\end{equation*}
$$

in agreement with (1.16).
It follows from (1.6) that

$$
G_{n}(x)=\sum_{j=0}^{2 n+1}(-1)^{j}\binom{2 n+1}{j} x^{j} \sum_{k=0}^{\infty}\left(\frac{k(k+1)}{2}\right)^{n} x^{k}=\sum_{k=0}^{\infty} x^{k} \sum_{\substack{j=0 \\ j \leqslant k}}^{2 n+1}(-1)^{j}\binom{2 n+1}{j}\left(\frac{(k-j)(k-j+1)}{2}\right)^{n} .
$$

$$
\begin{equation*}
G_{n, k}=\sum_{\substack{j=0 \\ j \leqslant k}}^{2 n+1}(-1)^{j}\binom{2 n+1}{j}\left(\frac{(k-j)(k-j+1)}{2}\right)^{n} \tag{2.1}
\end{equation*}
$$

Since the $(2 n+1)^{\text {th }}$ difference of a polynomial of degree $\leqslant 2 n$ must vanish identically, we have

$$
\text { (2.2) } \quad G_{n, k}=0 \quad(k \geqslant 2 n+1)
$$

Let $k \leqslant 2 n$. Then
(2.3) $0=\sum_{j=0}^{2 n+1}(-1)^{j}\binom{2 n+1}{j}\left(\frac{(k-j)(k-j+1)}{2}\right)^{n}=G_{n, k}+\sum_{j=k+1}^{2 n+1}(-1)^{j}\binom{2 n+1}{j}\left(\frac{(k-j)(k-j+1)}{2}\right)^{n}$

$$
=G_{n, k}-\sum_{j=0}^{2 n-k}(-1)^{j}\binom{2 n+1}{2 n-j+1}\left(\frac{(k+j-2 n-1)(k+j-2 n)}{2}\right)^{n}
$$

Therefore

$$
=G_{n k}-\sum_{j=0}^{2 n-k}(-1)^{j}\binom{2 n+1}{j}\left(\frac{(2 n-k-j)(2 n-k-j+1)}{2}\right)^{n}=G_{n, k}-G_{n, 2 k-k}
$$

(2.4)

Note also that, by (2.3),
(2.5)

Since by (2.4)

$$
\begin{gathered}
G_{n, k}=G_{n, 2 n-k} \quad(1 \leqslant k \leqslant 2 n-1) \\
G_{n, 2 n}=0
\end{gathered}
$$

it is clear that $G_{n}(x)$ is of degree $2 n-1$.

$$
G_{n, 2 n-1}=G_{n, 1}=1
$$

$$
\begin{aligned}
& \text { In the next place, by (1.7), } \\
& \qquad 2 \frac{G_{n+1}(x)}{(1-x)^{2 n+3}}=x \frac{d^{2}}{d x^{2}}\left\{\frac{x G_{n}(x)}{(1-x)^{2 n+1}}\right\}=\frac{x^{2} G_{n}^{\prime \prime}(x)+2 x G_{n}^{\prime}(x)}{(1-x)^{2 n+1}}+2(2 n+1) \frac{x^{2} G_{n}^{\prime}(x)+x G_{n}(x)}{(1-x)^{2 n+2}} \\
& \qquad \quad+(2 n+1)(2 n+2) \frac{x^{2} G_{n}(x)}{(1-x)^{2 n+3}} . \\
& \text { Hence } \\
& \text { (2.6) } 2 G_{n+1}(x)=(1-x)^{2}\left(x^{2} G_{n}^{\prime \prime}(x)+2 x G_{n}^{\prime}(x)\right)+3(3 n+1)(1-x)\left(x^{2} G_{n}^{\prime}(x)+x G_{n}(x)\right)+(2 n+1)(2 n+2) x^{2} G_{n}(x) .
\end{aligned}
$$

Comparing coefficients of x^{k}, we get, after simplification,
(2.7) $G_{n+1, k}=1 / 2 k(k+1) G_{n, k}-k(2 n-k+2) G_{n, k-1}+1 / 2(2 n-k+2)(2 n-k+3) G_{n, k-2} \quad(1 \leqslant k \leqslant 2 n-1)$.

For computation of the $G_{n}(x)$ it may be preferable to use (2.6) in the form
(2.8) $2 G_{n+1}(x)=(1-x)^{2} x\left(x G_{n}(x)\right)^{\prime \prime}+2(2 n+1)(1-x) x\left(x G_{n}(x)\right)^{\prime}+(2 n+1)(2 n+2) x^{2} G_{n}(x)$.

The following values were computed using (2.8):
(2.9)

$$
\left\{\begin{array}{l}
G_{0}(x)=1, \quad G_{1}(x)=x \\
G_{2}(x)=x+4 x^{2}+x^{3} \\
G_{3}(x)=x+20 x^{2}+48 x^{3}+20 x^{4}+x^{5} \\
G_{4}(x)=x+72 x^{2}+603 x^{3}+1168 x^{4}+603 x^{5}+72 x^{6}+x^{7}
\end{array}\right.
$$

Note that, by (2.1),

$$
\begin{gathered}
G_{n, 2}=3^{n}-(2 n+1), \quad G_{n, 3}=6^{n}-(2 n+1) \cdot 3^{n}+n(2 n+1) \\
G_{n, 4}=10^{n}-(2 n+1) \cdot 6^{n}+n(2 n+1) \cdot 3^{n}-\frac{1}{3} n\left(4 n^{2}-1\right)
\end{gathered}
$$

and so on.

By means of (2.7) we can evaluate $G_{n}(1)$. Note first that (2.7) holds for $1 \leqslant k \leqslant 2 n+1$. Thus, summing over k, we get

$$
\begin{aligned}
G_{n+1}(1) & =\sum_{k=1}^{2 n-1} 1 / 2 k(k+1) G_{n, k}-\sum_{k=2}^{2 n} k(2 n-k+2) G_{n, k-1}+\sum_{k=3}^{2 n+1} 1 / 2(2 n-k+3)(2 n-k+3) G_{n, k-2} \\
& =\sum_{k=1}^{2 n-1}\{1 / 2 k(k+3)-(k+1)(2 n-k+1)+1 / 2(2 n-k)(2 n-k+1)\} G_{n, k}=\sum_{k=1}^{2 n-1}(n+1)(2 n+1) G_{n, k}
\end{aligned}
$$

so that
(2.10) It follows that

$$
\begin{aligned}
& G_{n+1}(1)=(n+1)(2 n+1) G_{n}(1) . \\
& G_{n}(1)=2^{-n}(2 n)!\quad(n \geqslant 0) .
\end{aligned}
$$

(2.11)

$$
G_{1}(1)=1, \quad G_{2}(1)=6, \quad G_{3}(1)=90, \quad G_{4}(1)=2520,
$$

in agreement with (2.9).

3. THE GENERAL CASE

It follows from

$$
\begin{equation*}
\frac{G_{n}^{(p)}(x)}{(1-x)^{p n+1}}=\sum_{k=0}^{\infty} T_{k, p}^{n} x^{k} \quad(p \geqslant 1, n \geqslant 0) \tag{3.1}
\end{equation*}
$$

that

$$
G_{n}^{(p)}(x)=\sum_{j=0}^{p n+1}(-1)^{j}\binom{p n+1}{j} x^{j} \sum_{k=0}^{\infty} x^{k} \sum_{\substack{j=0 \\ j \leqslant k}}^{p n+1}(-1)^{j}\left(p_{j}^{n+1}\right) T_{k-j, p}^{n}
$$

Since

$$
T_{k, p}=\binom{k+p-1}{p}
$$

is a polynomial of degree p in k and the ($p n+1$)th difference of a polynomial of degree $\leqslant p n$ vanishes identically, we have

$$
\begin{equation*}
\sum_{j=0}^{p n+1}(-1)^{j}\binom{p n+1}{j} T_{k-j, p}^{n}=0 \tag{3.3}
\end{equation*}
$$

Thus, for $p n-p+1<k \leqslant p n$,

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{j}\binom{p n+1}{j} T_{k-j, p}^{n}=-\sum_{j=k+1}^{p n+1}(-1)^{j}\binom{p n+1}{j} T_{k-j, p}^{n} \tag{3.4}
\end{equation*}
$$

Since, for $p n-p+1<k \leqslant p n, k<p \leqslant p+1$, we have $-p<k-j<0$, so that $T_{k-j, p}=0(k+1 \leqslant j \leqslant p n+1)$. That is, every term in the right member of (3.4) is equal to zero. Hence (3.3) gives

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{j}\binom{p n+1}{j} T_{k-j, p}^{n}=0 \quad(p n-p+1<k \leqslant p n) \tag{3.5}
\end{equation*}
$$

It follows that $G_{n}^{(p)}(x)$ is of degree $\leqslant p n-p+1$:

$$
\begin{equation*}
G_{n}^{(p)}(x)=\sum_{k=0}^{p n-p+1} G_{n, k}^{(p)} x^{k} \quad(n \geqslant 1) \tag{3.6}
\end{equation*}
$$

where

By (3.3) and (3.7),

$$
\begin{equation*}
G_{n, k}^{(p)}=\sum_{j=0}^{k}(-1)^{j}\binom{p n+1}{j} T_{k-j, p}^{n} \quad(1 \leqslant k \leqslant p n-p+1) \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
G_{n, k}^{(p)}=-\sum_{j=k+1}^{p n+1}(-1)^{j}\binom{p n+1}{j} T_{k-j, p}^{n}=(-1)^{p n} \sum_{j=0}^{p n-k}(-1)^{j}\binom{p n+1}{j} T_{k+j-p n-1, p}^{n} \tag{3.8}
\end{equation*}
$$

For $m \geqslant 0$, we have

$$
T_{-m, p}=\frac{(-m)(-m+1) \cdots(-m+p-1)}{p!}=(-1)^{p}\binom{m}{p}=(-1)^{p} T_{m-p+1, p} .
$$

Substituting in (3.8), we get

$$
G_{n, k}^{(p)}=(-1)^{p n} \sum_{j=0}^{p n-k}(-1)^{j}\binom{p n+1}{j} \cdot(-1)^{p n} T_{p n-k-j-p+2, p}^{n}=\sum_{j=0}^{p n-k}(-1)^{j}\binom{p n+1}{j} T_{(p n-k-p+2)-j, p}^{n}
$$

This evidently proves the symmetry relation
(3.9)

$$
G_{n, k}^{(p)}=G_{n, p n-k-p+2}^{(p)} \quad(1 \leqslant k \leqslant p n-p+1)
$$

For $p=1$, (3.9) reduces to (1.4); for $p=2$, it reduces to (1.9).
In the next place, it follows from (3.1) and (3.2) that

$$
\begin{aligned}
& p!\frac{G_{n+1}^{(p)}(x)}{(1-x)^{p(n+1)+1}}=x \frac{d^{p}}{d x^{p}} \quad x^{p-1}\left\{\frac{G_{n}^{(p)}(x)}{(1-x)^{p n+1}}\right\}=x \sum_{j=0}^{p}\binom{p}{j} \frac{d^{p-j}}{d x^{p-1}}\left(x^{p-1} G_{n}^{(p)}(x)\right) \cdot \frac{d^{j}}{d x^{p}}\left((1-x)^{-p n-1}\right) \\
& =x \sum_{j=0}^{p}\binom{p}{j}(p n+1)_{j}(1-x)^{-p n-j-1} \frac{d^{p-j}}{d x^{p-j}}\left(x^{p-1} G_{n}^{p)}(x)\right),
\end{aligned} \quad \begin{aligned}
& \text { where }
\end{aligned}
$$

$$
(p n+1)_{j}=(p n+1)(p n+2) \cdots(p n+j)
$$

We have therefore
(3.10)

$$
p!G_{n+1}^{(p)}(x)=x \sum_{j=0}^{p}\binom{p}{j}(p n+1)_{j}(1-x)^{p-j} \frac{d^{p-j}}{d x^{p-j}}\left(x^{p-1} G_{n}^{(p)}(x)\right)
$$

Substituting from (3.6) in (3.10), we get
$\rho!\sum_{m=1}^{p n+1} G_{n+1, m}^{(p)} x^{m}=x \sum_{j=0}^{p}\binom{p}{j}(p n+1)_{j}(1-x)^{p-j} \cdot \frac{d^{p-j}}{d x^{p-j}} \sum_{k=0}^{p n-p+1} G_{n, k}^{(p)} x^{k+p-1}=x \sum_{j=0}^{p}\binom{p}{j}(p n+1) \sum_{s=0}^{p-j}(-1)^{s}\binom{p-j}{s} x^{s}$
(3.11)

$$
\begin{aligned}
& \cdot \sum_{k=1}^{p n-p+1} G_{n, k}^{(p)}(k+j)_{p-j} x^{k+j-1}=\sum x^{m} \sum_{k+j+s=m}(-1)^{s}\binom{p}{j}\binom{p-j}{s}(p n+1)_{j}(k+j)_{p-j} G_{n, k}^{(p)} \\
= & \sum_{m=1}^{p n+1} x^{m} \sum_{\substack{k=1 \\
k \geqslant m-p}}^{m} G_{n, k}^{(p)} \sum_{j+s=m-k}(-1)^{s}\binom{p}{j}\binom{p-j}{s}(p n+1)_{j}(k+j)_{p-j} .
\end{aligned}
$$

The sum on the extreme right is equal to $\}$

$$
\begin{align*}
& \sum_{j+s=m-k}(-1)^{s} \frac{p!(p n+1)_{j}(k+j)_{p-j}}{j!s!(p-j-s)!}=\sum_{j=0}^{m-k}(-1)^{m-k-j} \frac{p!(p n+1)_{j}(k+p-1)!}{j!(m-k-j)!(k+p-m)!(k+j-1)!} \tag{3.12}\\
&=(-1)^{m-k} \frac{p!(k+p-1)!}{(k-1)!(m-k)!(k+p-m)!} \sum_{j=0}^{m-k} \frac{(-m+k)_{j}(p n+1)_{j}}{j!(k)_{j}} .
\end{align*}
$$

By Vandermonde's theorem, the sum on the right is equal to

$$
\frac{(k-p n-1)_{m-k}}{(k)_{m-k}}=(-1)^{m-k} \frac{(p n-k+1)!(k-1)!}{(p n-m+1)!(m-1)!} .
$$

Hence, by (3.11) and (3.12),

$$
\begin{equation*}
G_{n+1, m}^{(p)}=\sum_{\substack{k=1 \\ k \geqslant m-p}}\binom{k+p-1}{m-1}\binom{p n-k+1}{m-k} G_{n, k}^{(p)} \quad(1 \leqslant m \leqslant p n+1) \tag{3.13}
\end{equation*}
$$

Summing over m, we get

$$
G_{n+1}^{(p)}(1)=\sum_{k=1}^{p n-p+1} G_{n, k}^{(p)} \sum_{m=k}^{k+p}\binom{k+p-1}{k+p-m}\binom{p n-k+1}{m-k}
$$

By Vandermonde's theorem, the inner sum is equal to

$$
\binom{p n+p}{p}
$$

so that
(3.14)

$$
G_{n+1}^{(p)}(1)=\binom{p n+p}{p} G_{n}^{(p)}(1)
$$

Since $G_{1}^{(p)}(x)=x$, it follows at once from (3.14) that (3.15)

By (3.10) we have

$$
G_{n}^{(p)}(1)=(p!)^{-n}(p n)!
$$

$$
p!G_{2}^{(p)}(x)=x \sum_{j=0}^{p}\binom{p}{j}(p+1)_{j}(1-x)^{p-j} \cdot \frac{p!}{j!} x^{j}
$$

so that

$$
\begin{equation*}
G_{2}^{(p)}(x)=x \sum_{j=0}^{p}\binom{p}{j}\binom{p+j}{j} x^{j}(1-x)^{p-j} \tag{3.16}
\end{equation*}
$$

The sum on the right is equal to

$$
\sum_{j=0}^{p}\binom{p}{j}\binom{p+j}{j} x^{j} \sum_{s=0}^{p-j}(-1)^{s}\binom{p-j}{s} x^{s}=\sum_{k=0}^{p}\binom{p}{k} x^{k} \sum_{j=0}^{p-j}(-1)^{k-j}\binom{k}{j}\binom{p+j}{j}
$$

The inner sum, by Vandermonde's theorem or by finite differences, is equal to $\binom{p}{k}$. Therefore

$$
\begin{equation*}
G_{2}^{(p)}(x)=x \sum_{k=0}^{p}\binom{p}{k}^{2} x^{k} \tag{3.17}
\end{equation*}
$$

An explicit formula for $G_{3}^{(p)}(x)$ can be obtained but is a good deal more complicated than (3.17). We have, by (3.10) and (3.17),

$$
\begin{aligned}
p!G_{3}^{(p)}(x)=x \sum_{j=0}^{p}\binom{p}{j}(1-x)^{p-j} \cdot & \cdot \frac{d^{p-j}}{d x^{p-j}}\left\{\sum_{k=0}^{p}\binom{p}{k}^{2} x^{k+p}\right\}
\end{aligned}=x \sum_{j=0}^{p}(2 p+1) \cdot\binom{p}{j} \sum_{s=0}^{p-j}(-1)^{s}\binom{p-j}{s} x^{s} .
$$

The inner sum is equal to

$$
\begin{gathered}
\sum_{k+j+s=m}(-1)^{s} \frac{p!}{j!s!(p-s-j)!}\binom{p}{k}^{2} \frac{(k+p)!}{(k+j)!}(2 p+1)_{j}=\sum_{k+t=m}\binom{p}{k}^{2}\binom{p}{t} \frac{(k+p)!}{k!} \sum_{j=0}^{t}(-1)^{t-j}\binom{t}{j} \frac{(2 p+1)_{j}}{(k+1)_{j}} \\
=\sum_{k+t=m}(-1)^{t}\binom{p}{k}^{2}\binom{p}{t} \frac{(k+p)!}{k!} \frac{(k-2 p)_{t}}{(k+1)_{t}}=\sum_{k+t=m}\binom{p}{k}^{2}\binom{p}{t} \frac{(k+p)!}{m!} \frac{(2 p-k)!}{(2 p-m)!} .
\end{gathered}
$$

Therefore

$$
\begin{equation*}
G_{3}^{(p)}(x)=x \sum_{m=0}^{2 p} x^{m} \sum_{k=0}^{m}\binom{p}{k}^{2}\binom{p}{m-k} \frac{(k+p)!(2 p-k)!}{p!m!(2 p-m)!} . \tag{3.18}
\end{equation*}
$$

4. COMBINATORIAL INTERPRETATION

As in the Introduction, put $Z_{n}=\{1,2, \cdots, n\}$ and consider sequences $\sigma=\left(a_{1}, a_{2}, \cdots, a_{N}\right)$, where the $a_{i} \in Z_{n}$ and the element j occurs e_{j} times in $\sigma, 1 \leqslant j \leqslant n$. A rise in σ is a pair a_{i}, a_{i+1} such that $a_{i}<a_{i+1}$, also a conventional rise to the left of a_{1} is counted. The ordered set of nonnegative integers $\left[e_{1}, e_{2}, \cdots, e_{n}\right]$ is called the signature of σ. Clearly $N=e_{1}+e_{2}+\cdots+e_{n}$.
Let

$$
A\left(e_{1}, e_{2}, \cdots, e_{n} \mid r\right)
$$

denote the number of sequences σ of specification $\left[e_{1}, e_{2}, \cdots, e_{n} \mid r\right]$ and having r rises. In particular, for $e_{1}=e_{2}=$ $\ldots=e_{n}=p$, we put
(4.1)

The following lemma will be used.

$$
A(n, p, r)=A(p, \underbrace{p, \cdots, p}_{n}(r) .
$$

Lemma. For $n \geqslant 1$, we have

$$
\begin{equation*}
A(n+1, p, r)=\sum_{\substack{j=1 \\ j \geqslant r-p}}^{r}\binom{p n-j+1}{r-j}\binom{p+j-1}{r-1} A(n, p, j) \quad(1 \leqslant r \leqslant p n+1) . \tag{4.2}
\end{equation*}
$$

It is easy to see that the number of rises in sequences enumerated by $A(n+1, p, r)$ is indeed not greater than $p n+1$.
To prove (4.2), let σ denote a typical sequence from z_{n} of specification $[p, p, \cdots, p]$ with j rises. The additional p elements $n+1$ are partitioned into k nonvacuous subsets of cardinality $f_{1}, f_{2}, \cdots, f_{k} \geqslant 0$ so that

$$
\begin{equation*}
f_{1}+f_{2}+\cdots+f_{k}=p, \quad f_{i}>0 . \tag{4.3}
\end{equation*}
$$

Now when f elements $n+1$ are inserted in a rise of σ it is evident that the total number of rises is unchanged, that is, $j \rightarrow j$. On the other hand, if they are inserted in a nonrise (that is, a fall or level) then the number of rises is increased by one: $j \rightarrow j+1$. Assume that the additional p elements have been inserted in a rises and b nonrises. Thus we have $j+b=r, a+b=k$, so that

$$
a=k+j-r, \quad b=r-j
$$

The number of solutions $f_{1}, f_{2}, \cdots, f_{k}$ of (4.3), for fixed k, is equal to $\binom{p-1}{k-1}$. The a rises of σ are chosen in

$$
\binom{j}{a}=\binom{j}{k+j-r}=\binom{j}{r-k}
$$

ways; the b nonrises are chosen in

$$
\binom{p n-j+1}{b}=\binom{p n-j+1}{r-j}
$$

ways.
It follows that

The inner sum is equal to

$$
A(n+1, p, r)=\sum_{j} A(n, p, j) \cdot \sum_{k=1}^{p}\binom{p-1}{k-1}\binom{j}{r-k}\binom{p n-j+1}{r-j} .
$$

$$
\binom{p n-j+1}{r-j} \sum_{k=0}^{p-1}\binom{p-1}{k}\binom{j}{r-k-1}=\binom{p n-j+1}{r-j}\binom{p+j-1}{r-1}
$$

by Vandermonde's theorem. Therefore

$$
A(n+1, p, r)=\sum_{j=1}^{r}\binom{p n-j+1}{r-j}\binom{p+j-1}{r-1} A(n, p, j)
$$

This completes the proof of (4.2). The proof may be compared with the proof of the more general recurrence (2.9) for $A\left(e_{1}, \cdots, e_{n} \mid r, s\right)$ in [3].
It remains to compare (4.2) with (3.13). We rewrite (3.13) in slightly different notation to facilitate the comparison:

Since

$$
\begin{equation*}
G_{n+1, r}^{(p)}=\sum_{j=1}^{r}\binom{p n-j+1}{r-j}\binom{p+j-1}{r-1} G_{n, j}^{(p)} . \tag{4.4}
\end{equation*}
$$

$$
A_{n, 1}^{(p)}=G_{n, 1}^{(p)}=1 \quad(n=1,2,3, \cdots)
$$

it follows from (4.2) and (4.4) that (4.5)

$$
G_{n, r}^{(p)}=A(n, p, r)
$$

To sum up, we state the following
Theorem. The coefficient $G_{n, k}^{(p)}$ defined by

$$
G_{n}^{(p)}(x)=\sum_{k=1}^{p n-p+1} G_{n, k}^{(p)} x^{k}
$$

is equal to $A(n, p, k)$, the number of sequences $\sigma=\left(a_{1}, a_{2}, \cdots, a_{p n}\right)$ from Z_{n}, of specification $[p, p, \cdots, p]$ and having exactly k rises.
As an immediate corollary we have

$$
\begin{equation*}
G_{n}^{(p)}(1)=\sum_{k=1}^{p n-p+1} G_{n, k}^{(p)}=(p!)^{-n}(p n)! \tag{4.6}
\end{equation*}
$$

Clearly $G_{n}^{(p)}(1)$ is equal to the total number of sequences of length $p n$ and specification $[p, p, \cdots, p]$, which, by a familiar combinatorial result, is equal to ($p!$) $-n(p n)$! The previous proof (4.6) given in $\S 3$ is of an entirely different nature.

5. RELATION OF $G_{n}^{p}(x)$ TO $A_{n}(x)$

The polynomial $G_{n}^{(p)}$ can be expressed in terms of the $A_{n}(x)$. For simplicity we take $p=2$ and, as in $\S 2$, write $G_{n}(x)$ in place of $G(2)(x)$.
By (1.6) and (1.1) ${ }^{n}$ we have
$2^{n} \frac{G_{n}(x)}{(1-x)^{2 n+1}}=\sum_{k=0}^{\infty}(k(k+1))^{n} x^{k}=\sum_{k=0}^{\infty} x^{k} \sum_{j=0}^{n}\binom{n}{j} k^{n+j}=\sum_{j=0}^{n}\binom{n}{j} \sum_{k=0}^{\infty} k^{n+j_{x} k}=\sum_{j=0}^{n}\binom{n}{j} \frac{A_{n+j}(x)}{(1-x)^{n+j+1}}$,
so that
(5.1)

$$
2^{n} G_{n}(x)=\sum_{j=0}^{n}\binom{n}{j}(1-x)^{n-j} A_{n+j}(x)
$$

The right-hand side of (5.1) is equal to

$$
\sum_{j=0}^{n}\binom{n}{j} \sum_{s=0}^{n-j}(-1)^{s}\binom{n-j}{s} x^{s} \sum_{k=1}^{n+j} A_{n+j, k} x^{k}=\sum_{m=1}^{2 n} x^{m} \sum_{j=0}^{n} \sum_{\substack{k=1 \\ k \leqslant m}}^{n+j}(-1)^{m-k}\binom{n}{j}\binom{n-j}{n-k} A_{n+j, k}
$$

Since the left-hand side of (5.1) is equal to

$$
2^{n} \sum_{m=1}^{2 n-1} G_{n, m} x^{m}
$$

it follows that

$$
\begin{equation*}
2^{n} G_{n, m}=\sum_{k=1}^{m}(-1)^{m-k} \sum_{j=0}^{n-m+k}\binom{n}{j}\binom{n-j}{m-k} A_{n+j, k} \quad(1 \leqslant m \leqslant 2 n-1) \tag{5.2}
\end{equation*}
$$

and
(5.3)

$$
0=\sum_{k=n}^{2 n}(-1)^{k} \sum_{j=0}^{k-n}\binom{n}{j}\binom{n-j}{2 n-k} A_{n+j, k}
$$

In view of the combinatorial interpretation of $A_{n, k}$ and $G_{n, m}$, (5.2) implies a combinatorial result; however the result in question is too complicated to be of much interest.
For $p=3$, consider
$6^{n} x \frac{G_{n}^{(3)}(x)}{(1-x)^{3 n+1}}=\sum_{k=0}^{\infty} k^{n}\left(k^{2}-1\right)^{n} x^{k}=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \sum_{k=0}^{\infty} k^{n+2 j} x^{k}=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \frac{A_{n+2 j}(x)}{(1-x)^{n+2 j+1}}$.
Thus we have

$$
\begin{equation*}
6^{n} x G_{n}^{(3)}(x)=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}(1-x)^{2 n-2 j} A_{n+2 j}(x) \tag{5.4}
\end{equation*}
$$

The right-hand side of (5.4) is equal to
$\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \sum_{s=0}^{2 n-2 j}(-1)^{s}\binom{2 n-2 j}{s} x^{s} \sum_{k=1}^{n+2 j} A_{n+2 j, k} x^{k}=\sum_{m=1}^{3 n} x^{m} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \sum_{k=1}^{n+2 j}(-1)^{m-k}\binom{2 n-2 j}{m-k} A_{n+2 j, k}$.
It follows that
(5.5)

$$
6^{n} G_{n, m-1}^{(3)}=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \sum_{k=1}^{n+2 j}(-1)^{m-k}\binom{2 n-2 k}{m-k} A_{n+2 j, k}
$$

REFERENCES

1. L. Carlitz, "Eulerian Numbers and Polynomials," Mathematics Magazine, 30 (1958), pp. 203-214.
2. L. Carlitz, "Extended Bernoulli and Eulerian Numbers," Duke Mathematical Journal 31 (1964), pp. 667-690.
3. L. Carlitz, "Enumeration of Sequences by Rises and Falls: A Refinement of the Simon Newcomb Problem," Duke Mathematical Journal, 39 (1972), pp. 267-280.
4. J. F. Dillon and D. P. Roselle, "Simon Newcomb's Problem," SIAM Journal on Applied Mathematics, 17 (1969), pp. 1086-1093.
5. P. A. M. MacMahon, Combinatorial Analysis, Vol. I, University Press, Cambridge, 1915.
6. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.

[Continued from page 129.]

Recalling [2, p. 137] that

$$
(j+1) \sum_{k=1}^{n} k^{j}=B_{j+1}(n+1)-B_{j+1}
$$

where $B_{j}(x)$ are Bernoulli polynomials with $B_{j}(0)=B_{j}$, the Bernoulli numbers, we obtain from (2.3) with $x=1, B=$ 1, and $C_{k}=k$ the inequality

$$
\text { (2.4) } \quad B_{2 p}(n+1)-B_{2 p} \leqslant\left(B_{p}(n+1)-B_{p}\right)^{2} \quad(n=1,2, \cdots)
$$

For $p=2 k+1, k=1,2, \cdots, B_{2 k+1}=0$, and so (2.4) gives the inequality

$$
\begin{equation*}
B_{4 k+2}(n+1)-B_{4 k+2} \leqslant B_{2 k+1}^{2}(n+1) \quad(n, k=1,2, \cdots) \tag{2.5}
\end{equation*}
$$

3. AN INEQUALITY FOR INTEGER SEQUENCES

Noting that $U_{k}=k$ satisfies the difference equation

[Continued on page 151.]

$$
U_{k+2}=2 U_{k+1}-U_{k}
$$

