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1. INTRODUCTION 
Put 

(1.1) T knxk = AnM (n>0). 
k=0 (1-x)n+l 

It is well known (see for example [1], [2, Ch. 2] that, for n > 1,An(x) is a polynomial of degree n: 

(1.2) AnM = £ An>kx
k; 

k=l 
the coefficients An^ are called Eulerian numbers. They are positive integers that satisfy the recurrence 
(1.3) An+1>k = (n-k+2)An)k_1+kAn>k 

and the symmetry relation 
(1.4) 

Anfk ~ ^n,n-k+l (1 < k < n). 
There is also the explicit formula 

k 
(1.5) An>k = X; (-VJ^I^fk-jr (1 < n < k). 

3=0 

Consider next 
d.6) £ (^_±i;)V _- GnM {n>0) 

£0
K 2 ' (1-X)2n+1 

We shall show that, for n > 7, Gn(x) is a polynomial of degree 2n - 7; 
2n-l 

(1.7) Gn(x) = £ GnMxk . 
k=0 

The Gnfk are positive integers that satisfy the recurrence 
(1-8) Gn+lfk = y2k(k + 1)Gn}k~k(2n-~k+2)Gn>k__l + 1/2(2n-k+2)(2n-k + 3)Gnfk_2 (1<k<2n + 1) 
and the symmetry relation 
(1.9) GnM - Gn>2n-k (1 <k <2n-7). 
There is also the explicit formula 

(1-10) Gntk = £ (-i)>^ + i){<l<-m-i+1))n (7<k<2n-1). 
j=0 

The definitions (1.1) and (1.6) suggest the following generalization. Letp > 7 and put 

(1.11) £ TV xk = b " W (n > 0), 

where 
138 
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d.i2) r*,p = ( * * ; - ' ) • 
We shall show that G^(x) is a polynomial of degree pn - p + 1. 

pn-p+l 
(1.13) G<P>(x) = Y G^hk (n > 1), 

k=l 
where the G^ are positive integers that satisfy the recurrence 

m 
(1.14) G(Pj1m= £ (k+p-l\,pn-k + l\G(p) (1<m<pn + 1)t 

n+l,m *—* \ m — 1 I \ m — k I n,k r ' 
k >m~p 

and the symmetry relation 

There is also the explicit formula 
k 

(1.16) G(pl = 12 (-Vj{pn + 1)K. (1 < k <pn-p + 1) 
n,k *—* 1 k-up r r 

j=0 
with r ^p defined by (1.12). 

Clearly 
G^(x) = An(x), G&M = Gn(x). 

The Eulerian numbers have the following combinatorial interpretation. PutZn = {1,2, — ,A7}*and let 7r=(ai, a2, 
—, an) denote a permutation of Zn. A rise of IT is a pair of consecutive elements^-, a[+i such that a\ < a{+i; in addi-
tion a conventional rise to the left of at is included. Then [6, Ch. 8] Antk is equal to the number of permutations of 
Zn with exactly k rises. 

To get a combinatorial interpretation of G^Y we recall the statement of the Simon Newcomb problem. Consider 
sequences o=\(a\, a2, -fa^)\^ length /V wiff ia,-eZw, For 1 <i <n, let/ occur in a exactly^ times; the ordered 
set iei,e2, —, en) is called the specification of a. A rise is a pair of consecutive elements a,-, a{+i such that a{ < a{+i; 
a fall is a pair a^, a{+i such that a; > a{+\; a level is a pair a{, a[+i such that a{ = a{+i. A conventional rise to the left 
of ai is counted, also a conventional falI to the right of a^. Let o have r rises, s falls and t levels, so that r + s + t = 
N + 1. The Simon Newcomb problem [5, IV, Ch.4], [6,Ch„8] asks for the number of sequences fromZn of length 
N, specification [e^, e2, ~, en] and having exactly r rises. LetAfei, e2, -fe^r) denote this number. Dillon and 
Roselle [4] have proved that A(ei, -,en\r) is an extended Eulerian number [2] defined in the following way. Put 

m=l r=l 
where £(s) is the Riemann zeta-f unction and 

then 
m = p^2 ~'Pn > N = Bi+82 + " + *n 

A(ei,e2,-,en\r) =• A*(m,r), 
Moreover 

(1.17) A(91,e2,~,e„\r) = £(-1)i[Nt1)n(ei + r«'~1) • 
j=0 i=l 

A refined version of the Simon Newcomb problem asks for the number of sequences from zn of length N, specifi-
cation [ei,e2, —,er] and with r rises and s falls, let A(ei, ••-, en\r,s) denote this enumerant. It is proved in [3] that 

(1.18) £ £ A(ei,...,en^.../nxy^J1^y-^-^^-^ 
ei,..,en=0 r+s<N+l » y « „ + f r _ ^ _^ « „ +(y _ ^ 

However explicit formulas were not obtained fcMfe,-, ~, en\r,s). 
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Returning to G'p£ , we shall show that 

(1.19) " ' G^l = A(p^\k). 

Thus (1.17) gives 

(1.20) G(
n
pl = E (-vi{pnt1)(p + k-:>-1)n 

' j=0 
in agreement with (1.16). 

2. THE CASEp=2 
It follows from (1.6) that 

2n+l °° / vi °° 2n+l 

onM- E (-vj{2n;V E ( ^ ) V = E *h E t-v^Hk-ito-i+vii 
j=0 k=0 k=0 j=0 J 

Hence, by (1.7), / < * 
2n+l 

(2.D GnM= E <-i)\2- + l)^k-i>'k-i+1>)n 

j=0 J 

Since the (2n + l)th difference of a polynomial of degree <2n must vanish identically, we have 
(2.2) GHfk = 0 (k > 2n + 1). 

Let k<2n. Then 
2n+l * 2n+l 

(2.3) 0 = £ (-1)i{*f%{k-W-i+V)n = Gn$k+ Z (-l)i(^+l){(k-i)(k-i+V)n 

j=0 Z j=k+l J 

j=0 
Therefore 
(2.4) G ^ = Gnt2n-k (f < k <2n-7). 
Note also that, by (2.3), 
(2.5) GnM = 0. 
Since by (2.4) 

Gn,2n-1 = Gn,l = h 
it is clear that Gn (x) is of degree 2n - 1, 

In the next place, by (1.7), 
2 Gn+1(x) = x j^_\ xGn(x) l = x2G'n(x)+2xG'n(x) +2(2n + x2G'Jx)+xGnM 

(l-x)2n+3 dx2\(1-x)2n+1) (1~x)2n+l " (1-x)2n+2 

+ (2n + 1)(2n+2) * GnM ~ 
Hence (1-x)2n+3 

(2.6) 2Gn+1 (x) = (1 -x)2(x2Gn(x) + 2xG'n(x» + 3(3n + 1)(1-x)(x2G'n(x) +xGn(x» + (2n + 1)(2n +2)x2Gn(x) 

Comparing coefficients of x , we get, after simplification, 
(2.7) Gn+1M = 1/2k(k + l)GnM - k(2n - k +2)Grifk_1 + 1/2(2n - k +2)(2n - k+3)GnM_2 (1 < k <2n-1). 

For computation of the Gn(x) it may be preferable to use (2.6) in the form 

(2.8) 2Gn+1(x) = (1-x)2x(xGn(x))" + 2(2n + 1)(1 -x)x(xGn(x))'+ (2n + 1)(2n +2)x2Gn(x) . 
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The following values were computed using (2.8): 
GQ(X) = 1, Gi(x) = x 
G2U) = x+4x2 +x3 

G3(x) = x+20x2 +48x3 +20x4 +x5 (2.9) 

Note that, by (2.1), 
6 ^„7 [G4(x) = x + 72xz + 603xJ + 1168x* + 6Q3x:> + 72x° +x 

Gn,2 = 3n - (2n + 1), GH}3 = 6n - (2n + 1)-3n +n(2n + 1) 
Gn 4 = Wn - (2n + V-6n + n(2n + 1)>3n - ( n(4n2 - 1) and so on. ' o 

By means of (2.7) we can evaluate Gn(1). Note first that (2.7) holds for 1 <k <2n + 1. Thus, summing over k, we 
9 e t 2n-l 2n 2n+l 

Gn+1 (V = E . M(k + VGn,k - Z k<2n ~ k +2>Gn,k-l + E %<2n ~ k+3)(2n - k+3)GnM_2 
k=l k=2 fc=3 

so that 
(2.10) 
It follows that 
(2.11) 

In particular 

in agreement with (2.9). 

It follows from 

(3.1) 

that 

2n~l 2n~l 
J2 {1Mk + 3)-(k + l)(2n -k+1) + 1M2n - k)(2n -k + 1)}Gn>h = J^ (n + l)(2n + 1)Gn>k 
k^i ' k=i 

Gn+l(1) = (n + 1)(2n + 1)Gn(1). 

Gn(1) = 2~n(2n)l (n > 0) . 

Gi(1) = 1, G2(V = 6, G3(1) = 9Q, G4(V = 2520, 

3. THE GENERAL CASE 

GLP)M 
+, = £ Tn

kxk (p> I n>0), 
(1-x)Pn+l k=0 'P 

pn+1 °° pn+1 
G(P)(x)=Y. (-DH^;1)*] £ xk £ (-7)J(P" + 1)Tn 

j=0 ' k=0 j=0 
Since i<h 

(3.2) ^ = ( f e + r ' ) 
is a polynomial of degree p in k and the (pn + l)th difference of a polynomial of degree <pn vanishes identically, we 
have 

pn+1 
(3.3) £ (-1)i(Pn]+l)Tlj,P = a 

j=0 
Thus, for pn -p + 1 <k <pn, 

k pn+1 

j=o J JF j=k+i 

Since, for/7/7 -p + 1 <k <pn, k<p <p + 1,w have -p < k -j < Q, so that 7Vy,p = 0 (k+1 <j<pn + 1). That 
is, every term in the right member of (3.4) is equal to zero. Hence (3.3) gives 

k 
(3.5) £ (-VHpn + *) 7T . = O (pn-p + 1 < k < pn). 

j=0 J H'P 

It follows that is of degree <pn - p + 1: 
n pn-p+l 

(3.6) G^(x) = V G(plxk (n > 1), 
k=0 



142 GENERALIZED EULERIAN NUMBERS AND POLYNOMIALS [APR. 

where 

(3.7) GM = E (-vtr;1)^* " < * <p»-p+i)' 
By (3.3) and (3.7), 

pn+l pn-k 

(3.8) G(P) = - £ ^ ' ( P T ) ^ . P - (-IF" £ ' - " ' r / ' K • 
For/# > 0, we have 

r.m,p = (~mH-m + 1)-(-m+p-1)= {_,)P ^ __ hJ)PTm_p+lp . 

Substituting In (3.8), we get 
pn~k pn-k 

Q(P) = (-i)Pn Y" (-i)HPn + 1\.(-i)PnTn = Y* f-iiJ(Pn + 1)rn 

°n,k l " Zu f U \ j J f " ' pn-k-j-p+2,p 2- ' U \ j i' (pn-k-p+2)-j,p' 
j=o • j=o 

This evidently proves the symmetry relation 
<3-9> Gii = G(nP^k-P+2 (K'<P»-P + ». 

For/?= 7, (3.9) reduces to (1.4); for/7 = 2, it reduces to (1.9). 
In the next place, it follows from (3.1) and (3.2) that 

„ G®f __ x jv_ xP-Ajir!M_\ __ x £,P) JP± (xP-iG(P)(x)h JL ((1-x)-pn-t> 
(1 - X,p(n+D+1 dxP ^-xjPn+l) Po^'dxP'1 " dXP 

-x £ {ftpn + qa-xr**-1 £ ^G^M). 
J=0 dxp ] n 

where 
fr/7 + 1)j = (pn + 1)(pn + 2).- fpn +j). 

We have therefore 
(3.10) PltfJiM = x J2(?)(pn + 1)j(1-x)P-i -£1 (x^G^M). 

j=0 J dxp i 
Substituting from (3.6) in (3.10), we get 
pn+l p v • pn-p+1 p p-j 

m=l j*0 dxP* k=0 j=0J s=0 
pn-p+1 

an) . s
 G(

n
pi(k+j>P~jxk+H = z*m E ^n]){v:l){pn+^k+i^G{A 

k=l k+j+s=m 
pn+l m 

= E *m E GS E ^-^(p(p 7y )rp/? * 1W +i>p-i • 
m=l k=l j+s=m-k 

k>m-p 
The sum on the extreme right is equal to j 

(312) V (-1? P!<Pn + 1h<k+i>V'i =
 mx^/_7)m-k-j pKpn + DJk+p-D! 

. ^ ' ' j!s!{p-j-s)l ^ ' j!(m-k-j)!(k+p-m)!(k+j-1)! 
]+s=m-k j=0 

m'k (-m + k)j(pn + J)j = (-Dm-k pHk+p- D! y - f-m+Ujt 
(k-1)!(m-k)!(k+p-m)! ^ j!(k)j 

By Vandermonde's theorem, the sum on the right is equal to 
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(k-pn- Vm_k _ , jm-k (pn-k + 1)!(k - 1)! 
(k)m,k (pn-m + 1)!(m - 1)1' 

Hence, by (3.11) and (3.12), 

(3.13) GM = T.{k+p~1)(pn-k\1)G(pl (1<m<pn + 1). 
n+l,m *-* x m — 1 A m — k I n,k ^ 

k=l i 
k>m-p 

Summing over/77, we get 
pn-p+1 k+p 

Q(P) (J) = V G(p) W k+p-l\(pn-k + l\ 
n+1 Z-J n,k JLd \k + p — m j \ m — k ) 

k=l m=k 
By Vandermonde's theorem, the inner sum is equal to 

(V)-
so that v y ' 
(3.14) G(PjJV = (Pn+P)G(P)(1). 

n+1 \ p ) n 
Since G^(x)=xf it follows at once from (3.14) that 

(3.15) GM(1) = (p!)'n(pn)! . 
By (3.10) we have 

plG^(x) = x £ (P)(p + 1)j(1 - x)P~>- pJ, x>, 
i=o 3 l' 

so that 
(3.16) G(P>M = x £ {?)(p+j)xjn-x)p-j. 

j=0 J' 3 

The sum on the right is equal to 

£ (?xp;v s WW - £ ay z (-i)H(%pV) • 
j=0 s=0 k=0 j=0 

The inner sum, by Vandermonde's theorem or by finite differences, is equal to (^ ). Therefore 

(3.17) Gf(x)=x JtdfxK 
k=0 

An explicit formula for Gy'(x) can be obtained but is a good deal more complicated than (3.17). We have, by 
(3.10) and (3.17), 

P - drt ( P .-.2 , _ 1 P _ M 
p!G(P)(x)=xj;(P)(1-x)P-LJ!n) j:(Pk)xk+P\=xJ2 (2p + V.(P)Z(-VS(P:3)xS 

j=0 dxp J I k=0 J j=0 s=0 

•id)2 rn§^ - * £ *m s <-nw -M)2 ̂ <2p+h 
k=0 m=0 k+j+s=m 

The inner sum is equal to 
£ (~1> j!s!(p-s-j)!\k) (k+j)!UP "l L \k)\t) k! ^ ' U \j>(k + Jh 

k+j+s=m k+t=m j=0 J 

= V" / nt(p\?(p\(k+p)l (k-2p)t ^ (p\2(p\lk+p)! (2p - k)! 
L. ' " \k) \t) kl (k + 1)t , ^ \ k ) \ t ) m ! (2p-mS! ' 

h+t=m ' I k+t=m 
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Therefore 
2t) 771 o 

(3.18) G<*>M.X z *m E(f) LlkY^jffL'JI'-
m=0 k=0 

4. COMBINATORIAL INTERPRETATION 
As in the Introduction, putZn = { / , 2, —,n} and consider sequences o= (ai,a2, — ,a^), where the ̂ e Z w and 

the element / occurs ey times in o, 1 <j <n. A rise in a is a pair a\, a{+i such that a\ < a{+i, also a conventional rise 
to the left of a\ is counted. The ordered set of nonnegative integers le±, e2, ~, enJ tilled the signature of o. 
Clearly N * ei +e2 + ••• * £ n . 

Let 
A(ei, e2, - , en \r) 

denote the number of sequences a of specification fei, e2, ~-,en\
r] ana" havingr rises. In particular, fore\ =e2 = 

— = en = p, we put 
(4.1) A(n,p,r) = A(p,p, ~>,p\r). 
The following lemma will be used. '—v—' 

Lemma. For/7 > 1,we have 

(4.2) A(n + 1,p,r)= £ [^r-j*1){P''V-V)A(n'p'J') (1 < r < pn + V. 
j>r~p 

It is easy to see that the number of rises in sequences enumerated by A(n + 1,p, r) is indeed not greater than 
pn + I 

To prove (4.2), let o denote a typical sequence from zn of specification [p, p, —, p] with / rises. The additional p 
elements n + 1 are partitioned into k nonvacuous subsets of cardinality f^, f2, •-, fk>Oso that 

(4.3) fi+f2 + - + fks P* fi>0. 
Now when f elements n + 7 are inserted in a rise of o it is evident that the total number of rises is unchanged, that is, 
/-+/'. On the other hand, if they are inserted in a nonrise (that is, a fall or level) then the number of rises is increased 
by one: j -+j + 7. Assume that the additional p elements have been inserted in a rises and b nonrises. Thus we have 
j + b=r,a+b = k, so that 

a = k + j - r, b = r - j . 

The number of solutions f^, f2, - , 4 of (4.3), for fixed k, is equal to (^ " *). The a rises of o are chosen in 

(W = U - f j - r ) = ( r-fe) 
ways; the b nonrises are chosen in 

n — j + 1 \ _ / pn — j + 1\ 
b 1 [ r-j j ways. 

It follows that 

The inner sum is equal to 

k=o 
by Vandermonde's theorem. Therefore 

Afn + 1, p, r) = £ {P"r~~Jj+ 1){P+
rL~l1)A(n'P'i>-
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This completes the proof of (4.2). The proof may be compared with the proof of the more general recurrence (2.9) 
forA(ei, -,en\r,s) in [3 ] , 

It remains to compare (4.2) with (3.13). We rewrite (3.13) in slightly different notation to facilitate the comparison: 
r 

(44) G(p) = y (Pn-i + 1\(p+i-1\G(p) 
n+l,r L-J \ r—j l\ r—1 I n,j ' 

Since 
A<£l = G(&=1 ("= 1,2,3,.-), 

it follows from (4.2) and (4.4) that 
(4.5) G^r = A(n,p,r). 

To sum up, we state the following 

Theorem. The coefficient G^} defined by 

pn-p+l 
G(nP)<*> = E G$*k 

k=l 
is equal to A(n,p, k), the number of sequences o= (ai,a2, ~-,apn)itomZn, of specification [p,p, •>, p] and hav-
ing exactly k rises. 

As an immediate corollary we have 
pn-p+l 

(4.6) G(*)(1)= £ ^ l = (p\rn(pn)l. 
k=l 

Clearly G^(7) is equal to the total number of sequences of length pn and specification lp,p, —.p], which, by a 
familiar combinatorial result, is equal to (p!)~n(pn)!The previous proof (4.6) given in § 3 is of an entirely different 
nature. 

5. RELATION OF G$M TO An(x) 

The polynomial G$ can be expressed in terms of \\\s An(x). For simplicity we take/7 =2and,as in § 2,write 
Gn(x) in place of GQHx). 

By (1.6) and (Ll fwehave 
oo oo W n oo n A (V\ 

2n_GnM_= E (k(k + vrxk=XxkE{"yn+i = E(])Z kn+j^k = J:(])~^^ 
(7~x)2n+1 k=0 k=0 j=0 W / j=0K] Jk=0 j=0K3l(1-x)n+1+l 

so that 

(5.1) 2nGn(x) = £ (")(1-x)n-iAn+jM. 
j=0 

The right-hand side of (5.1) is equal to 
n n-j n+j 2n n n+j 

E (")E (-Df;1')*1 E *«<**** - E *m E E (-'>""*{")(n
nz{)A«<i.h • 

j=0 s=0 k=l m=l j=0 k=l 
k<m 

Since the left-hand side of (5.1) is equal to 
2n-l 

on \~^ r> m 
Z^J un,m* > 

m=l 
it follows that 

m n-m+k 
(5.2) 2nGn>m = £ (-1lm-k £ {nMZZi)An+j,k <1<nt<2n-1) 

k=l j=0 
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and 
2n k-n 

<5-3) 0= £ (-*>k E (1)(2
n„Zi)A«+j,k • 

k=n j=0 
In view of the combinatorial interpretation of Antk and Gn>m, (5.2) implies a combinatorial result; however the 

result in question is too complicated to be of much interest. 
For/7 = 3, consider 

6nx 

Thus we have 

p(3)/ i °° n °° n A / i 
"*i ' * ' _ V* i.n/i.2 *m k \~"» / *\n-\ in\ V* i.n+2i_.k V* / 4in-i/n\ ^n+2vx' 

d-xt™ to h [i)to h ^Ut-x^w 

(5.4) 6nxG^(x) = Yl (-Vn-Hn)(l-x)2n'2>An+2jM. 
j=Q 3 

The right-hand side of (5.4) is equal to 
n 2n-2j n+2j 3n n n+2j 

ZJ-irH") E (-vs{2n;2iV E *n+2/,*** = E *m E ^n"y(?) E f̂*""* (*;:£'>««/,* • 
j=0 s=0 fe«i m = i ;=0 fe=i 
It follows that 

n n+2/ 
(5.5) Ti«GWm = £ (-1)n-]{n.) £ (-Vm-k(2n

mZ2
k
k) An+2j,k • 

j=0 k=l 
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******* 
[Continued from page 129.] 

Recalling [2, p. 137] that 

(j + i) £ k' = Bj+l(n + 1)-Bj+l: 

where Bj(x) are Bernoulli polynomials with Bj(O) = Bj, the Bernoulli numbers, we obtain from (2.3) with x=1,B = 
1, and Ck = k the inequality 

(2.4) B2p(n + 1) - B2p < (Bpfn + 1)- Bp)
2 (n = 1,2, -J. 

Forp= 2k + 1,k= 1,2, -~,B2k+1 =0, and so (2.4) gives the inequality 

(2-5) B4k+2(n + 1)- B4k+2 < B2
2k+1 (n + 1) (n,k = 7,2, •••). 

3. AN INEQUALITY FOR INTEGER SEQUENCES 
Noting that Uy, = k satisfies the difference equation 

Uk+2 = 2Uk+1 - Uk 

[Continued on page 151.] 


