FIBONACCI SINE SEQUENCES

M. B. GREGORY and J. M. METZGER University of North Dakota, Grand Forks, North Dakota 58202

INTRODUCTION

The purpose of this note is to find all real numbers x such that $\lim_{n \to \infty} \sin u_n \pi x$ exists, where u_n is any sequence of integers satisfying the recurrence $u_n = u_{n-1} + u_{n-2}$ (u_0, u_1 are integers, not both zero).

We will show that the sequence $\{\sin u_n \pi x\}$ converges only to zero and this happens precisely when x is in an appropriate homothet of the set of integers in the quadratic number field $\mathcal{Q}(\sqrt{5})$.

MAIN RESULTS

We will use the identity $\sin a - \sin \beta = 2 \cos \frac{1}{2}(a + \beta) \sin \frac{1}{2}(a - \beta)$ to show that if the limit

$$\lim_{n} \sin u_n \pi x = \rho$$

exists, then $\rho = 0$.

Let $a = u_{n+1}\pi x$, $\beta = u_{n-2}\pi x$, so that $\frac{1}{2}(a+\beta) = u_n\pi x$, and $\frac{1}{2}(a-\beta) = u_{n-1}\pi x$. The identity gives

$$\sin u_{n+1} \pi x - \sin u_{n-2} \pi x = 2 \sin u_{n-1} \pi x \cos u_n \pi x$$
.

Therefore, if $\lim_{n} \sin u_n \pi x = \rho \neq 0$, then

$$\cos u_n \pi x = \frac{\sin u_{n+1} \pi x - \sin u_{n-2} \pi x}{2 \sin u_{n-1} \pi x}$$

shows that $\lim_{n \to \infty} \cos u_n \pi x = 0$. However,

 $\sin u_{n+1}\pi x = \sin (u_n + u_{n-1})\pi x = \sin u_n\pi x \cos u_{n-1}\pi x + \cos u_n\pi x \sin u_{n-1}\pi x$ implies lim sin $u_n\pi x = 0$, a contradiction.

Theorem 1. $\lim_{n} \sin u_n \pi x = 0$ iff

$$\lim_{n \to \infty} \sin \phi^n \, \frac{\pi x}{\sqrt{5}} \, (u_0 + u_1 \, \phi) = 0, \quad \text{where} \quad \phi = \frac{1 + \sqrt{5}}{2}$$

Proof. Using Binet's formula for u_n , we have

$$\sin u_n \pi x = \sin \frac{\pi x}{\sqrt{5}} \left\{ \phi^{n-1} (u_0 + u_1 \phi) - (1 - \phi)^{n-1} [u_0 + u_1 (1 - \phi)] \right\}$$
$$= \sin \frac{\pi x}{\sqrt{5}} \phi^{n-1} (u_0 + u_1 \phi) \cos \frac{\pi x}{\sqrt{5}} (1 - \phi)^{n-1} [u_0 + u_1 (1 - \phi)]$$
$$- \sin \frac{\pi x}{\sqrt{5}} (1 - \phi)^{n-1} [u_0 + u_1 (1 - \phi)] \cos \frac{\pi x}{\sqrt{5}} \phi^{n-1} (u_0 + u_1 \phi)$$

Since $(1 - \phi)^n \to 0$ as $n \to \infty$, the cosine in the first term tends to one, while the sine in the second term tends to zero, for any x. The theorem follows.

Theorem 1 makes it plain that we must find the set B of all real x for which $\lim \sin \phi^n \pi x = 0$.

Theorem 2. B is the set of all numbers of the form $a + b\phi$, where a, b are integers.

FIBONACCI SINE SEQUENCES

Proof. We first observe that B is an additive subgroup of the real numbers, for

 $\sin \phi^n \pi (x - y) = \sin \phi^n \pi x \cos \phi^n \pi y - \cos \phi^n \pi x \sin \phi^n \pi y$

shows that x - y is in *B* if both x and y are in *B*. Now taking $u_0 = -1$, $u_1 = 2$ in Theorem 1 and observing that $2\phi - 1 = \sqrt{5}$, it is apparent that 1 is in *B* and hence the definition of *B* shows that ϕ is also in *B*. It follows that *B* contains every number of the form $a + b\phi$.

To prove that every member of *B* has this form, we adapt an argument from Cassels [1, p. 136]. If $\lim_{n} \sin \phi^{n} \pi x = 0$, then $\phi^{n} x = \rho_{n} + r_{n}$, where ρ_{n} is an integer and $\lim_{n} r_{n} = 0$. Let $s_{n} = \rho_{n+2} - \rho_{n+1} - \rho_{n}$, so that s_{n} is an integer. Then

$$s_n = (\phi^{n+2}x - r_{n+2}) - (\phi^{n+1}x - r_{n+1}) - (\phi^n x - r_n)$$

= $\phi^n x (\phi^2 - \phi - 1) - (r_{n+2} - r_{n+1} - r_n) = -(r_{n+2} - r_{n+1} - r_n)$

Since $\lim_{n \to \infty} r_n = 0$, we see that $\lim_{n \to \infty} s_n = 0$. Since s_n is an integer, we must have $s_n = 0$ for all $n \ge n_0 \ge 1$. Thus $r_{n+2} = r_{n+1} + r_n$ for $n \ge n_0$. Using Binet's formula, we have for $n \ge n_0$,

$$r_n = \frac{r_{n_0+1} - (1-\phi)r_{n_0}}{\sqrt{5}} \phi^n - \frac{r_{n_0+1} - \phi r_{n_0}}{\sqrt{5}} (1-\phi)^n$$

Because $\phi^n \to \infty$ and $(1 - \phi)^n \to 0$ as $n \to \infty$, the coefficient of ϕ^n must be zero; in other words, $r_{n_0+1} = (1 - \phi)r_{n_0}$. Thus, for $n \ge n_0$,

$$r_n = \frac{\phi r_{n_0} - r_{n_0+1}}{\sqrt{5}} (1 - \phi)^n = \frac{\phi r_{n_0} - (1 - \phi) r_{n_0}}{\sqrt{5}} (1 - \phi)^n$$
$$= \frac{r_{n_0}}{\sqrt{5}} (2\phi - 1)(1 - \phi)^n = r_{n_0}(1 - \phi)^n.$$

In particular, choosing $n = n_0$, we find $r_{n_0} = r_{n_0} (1 - \phi)^{n_0}$. This implies $r_{n_0} = 0$, and therefore $\phi^{n_0} x = \rho_{n_0}$, so that

$$x = p_{n_0} (1/\phi)^{n_0}$$
.

Using the facts that $1/\phi = \phi - 1$ and $\phi^2 = \phi + 1$, we see that $x = a + b\phi$ for suitable integers a and b.

CONCLUDING REMARKS

Combining Theorems 1 and 2, $\lim \sin u_n \pi x$ exists iff x is a member of the homothet

$$\frac{\sqrt{5}}{u_0+u_1\phi} B = \left\{\frac{\sqrt{5}}{u_0+u_1\phi} x : x \in B\right\}.$$

It is well known [3; p. 201] that B is the set of all integers in the quadratic number field $Q(\sqrt{5})$ and this suggests comparison with other sine sequences. In [2], it is shown that lim sin $2^n \pi x$ exists iff $2^{n_0}x$ is an integer for some

 $n_0 \in Z$. Here we have shown that $\lim_{n \to \infty} \sin \phi^n \pi x$ exists iff $\phi^{n_0} x$ is an integer for some $n_0 \in Z$.

In closing, we suggest it would be of interest to consider the same problem for the sine sequences $\sin u_n \pi \hat{x}$ when the u_n satisfies a recurrence $u_n = su_{n-1} + tu_{n-2}$, where s and t are positive integers.

REFERENCES

- 1. J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957.
- 2. M. B. Gregory and J. M. Metzger, "Sequences of Sines," Delta, Vol. 5 (1975), pp. 84-93.
- 3. I. Niven and H. Zuckerman, An Introduction to the Theory of Numbers, Third Ed., J. Wiley & Sons, New York, 1972.
