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INTRODUCTION 

The purpose of this note is to find all real numbers* such that lim sin unnx exists, where un is any sequence of 
integers satisfying the recurrence un = un-± + un_2 (uo> ul a r e integers, not both zero). 

We will show that the sequence {%\nunnx) con verges only to zero and thjs happens precisely when* is in an appro-
priate homothet of the set of integers in the quadratic number field Q(sj5). 

MAIN RESULTS 

We will use the identity sin a - s i n |3= 2 cos 1/2<a + j3) sin 1/2(a-/3) to show that if the limit 

lim sin unnx = p 
n 

exists, then p = 0. 
Let a = un+i nx, j3 = un-2 nx, SO that 1/2(a + j3) = un nx, and Vz(a - j3) = un_i nx. The identity gives 

sin un+i nx - sin un_2Ttx = 2 sin un_inx cos unnx. 

Therefore, if lim sin unnx = pt 0,then 
n 

sin un+i nx - sin un_2^x 
cos unnx = — n-J— 

2 sin un_i nx 

shows that lim cos unnx = 0. However, 
n 

sin un+i nx = sin (un + un^\)nx = sin unnx cos un„\ nx + cos unnx sin un_inx 

implies lim sin unnx = 0, a contradiction. 
n 

Theorem 1. lim sin unnx = 0 iff 
n 

lim Sin 0 n ™L (uQ+utfy) = 0, where 0 = 1-A^ . 

Proof. Using Binet's formula for un, we have 

s\nunnx = sin ^x- { ^"HUQ +Ui<t>) - (1 - (fr)"'1 [u0 +ut(1 - </>)]} 

nM. 4>n-1(u0+u1(S>)^'^- (1-<l>)n~l[uo+ul(1-<t>)] 

-sin ™L a-cpr^fuo+uid-^Jcos^- ^HUQ+U^). 

Since (1 - (p)n -> 0 as n -> * f the cosine in the first term tends to one, while the sine in the second term tends to 
zero, for any*. The theorem follows. II 

Theorem 1 makes it plain that we must find the set B of all real x for which lim sin (j>nnx = 0. 
n 

Theorem 2. B is the set of all numbers of the form a +b<j>, where a,h are integers. 
lie 
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Proof. We first observe that B is an additive subgroup of the real numbers, for 

sin (pnn(x - y) = sin $n-nx cos (pn7ry - cos (j)n7rx sin (pnny 
showsjhat x - y is in B if both x and y are in B. Now taking UQ = -1, u\ =2'\n Theorem 1 and observing that 2(j>-
1 = yj5, it is apparent that 1 is in B and hence the definition of B shows that 0 is also in B. It follows that B contains 
every number of the form a + / j0 . 

To prove that every member of B has this form, we adapt an argument from Cassels [ 1 , p. 136]. If lim sin c/)nnx = 
n 

0, then <pnx = pn + rn, where pn is an integer and lim rn = 0. Letsn = pn+2 - pn+l ~Pn> so thatsw is an integer. 
Then n 

sn = (<Pn+2x - rn+2) - (<pn+1x - rn+1) - (<j>nx - rn) 
= (pnx((p2 - 0 - 1) - (rn+2 - rn+1 -rn) = -(rn+2 - rn+1 - rj. 

Since \\m rn = 0, we see that lim sn = 0. Since sn is an integer, we must have sn = 0 for all n > HQ > 1. Thus rn+2 = 
n n 

rn+l + rn forn >rig. Using Binet's formula, we have forn >no, 

Because 0n -+ °° and (1 - 0 ) n - * 0 as/? -^ °°,the coefficient of 0 n must be zero; in other words, rn +i = (1 - <f))rn . 
Thus, for/7 >no, 

<brn - rn +i 6rn - (1 - 6)rn 

N/5 ^5 

In particular, choosing n =no, we find rn = rnJl' - (p)n°. This implies rn = 0, and therefore (f>n°x = PHQ , so that 

* = PnJIft}"* • 
Using the facts that 1/0= 0 - 1 and <p2 = 0 + 1, we see that x = a +h(j)for suitable integers a and b. II 

CONCLUDING REMARKS 

Combining Theorems 1 and 2, lim sin unnx exists iff A- is a member of the homothet 
n 

uo+ui(P I uo+ui<p J 
It is well known [3; p. 201] that B is the set of all integers in the quadratic number field Q(sJ5) and this suggests 
comparison with other sine sequences. In [2 ] , it is shown that lim sin 2n7T;r exists iff 2n°x is an integer for some 

n 
no^Z Here we have shown that lim sin (f)nitx exists iff (pn°x is an integer for some no^Z. 

n 
In closing, we suggest it would be of interest to consider the same problem for the sine sequences sin un nx when 

the un satisfies a recurrence un = sun_i + tun_2, where s and t are positive integers. 
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