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Most of this paper was finished prior to the author's involvement in other work [9 ,10] . It is the purpose of this 
exegesis to find a self-contained definition of {Gj} which is not dependent on other sequences. Such are (10), (12) 
and (16). I have defined these numbers in [2,(3)] and [3, (9)] . G numbers of thej'th order are: 

(1» GJtk = 1+P*k+Pj,2k-l, 

where the Lucas complement is by definition 

(2) Pj,k = PjMi+pj,k-i> 
and where coprime sequences are by definition,/ an integer, 

(3) Pjtk+i = JPj,k+Pj,k-l, 

and where the initial conditions (IC) are by choice 
(3a) Pjt0 = 0 and Pjj = 1 for all /'. 

To begin we need the following easily proven identities. The Lucas complement of the Lucas complement is 

(4) PJMI +Pj,k-i = PjM2 +Wj,k +Pj,k-2 = (4 +j2)Pjtk • 
Secondly given any two point recurrence/3^ =aPn +bPn_i the recurrence among its bisection is known to be 
(5) Pn+2 = (a2+2b)Pn-h

2Pn_2 . 

Thirdly we need the central difference operator 
(6) 8 2Pn = (A - V)Pn = Pn+1 - 2Pn +Pn_t 

and fourthly I define a new operator small psi 
(7) VjfPJ = [S2-j2]Pn, 

where j 2 is really j 2 times the identity operator. Note that if B^n is any generalized bisected coprime sequence with 
any BtQ and Bu whatsoever that xjjj then acts as a null operator, to wit 
(8) \\jj(Bj)n) = 0 for a l l / . 
Now when / = / then (7) reduces to \\j(Fn) = [82 - l]Fn. Consider 

(9) ^j(Gj)k) = tyfPlk)-/2 

which is obvious from (1) and (8) and the fact that ^j(V= - / . In (9) elimination of 5 via (6) gives 
(9a) 4jj(Gj)k) = (4 +j2)Pj>k - (2 +j2)P*k -j2 . 

Theorem. The recurrence for \pj(Gjfk) is Fibonacci but for the additive constant/"5. 
Proof. Rewrite (9a) as i/'yGy^+i and substitute (3) giving 

<10) 1>j(GJtk+1) - fj2 +4][jPj)k +Pj,k-lJ ~ ft2 +2][jPlk +Pj,k~l] -J2 

= Mj(Gjtk) + il>j(Gj,k-l)+i3 

Eliminating/^ by calculating tyGj^+i - \pGjfk obtains 
Corollary 1. ^GjM1 = (j+l)^Gjfk - (j- D^Gj^-i - ^Gj>k„2 • 
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Inserting (7), the definition of psi, one finds the general recurrence 

(11) Gj,k+i = (i2+i + 3)Gj,k-(J3 +J2+3j+2)Gjyk_1+(j3 -j2 + 3j-2)Gj}k_2 

+ tj2-j + 3)Gj}k_3-Gj)k_4. 

This recurrence is not messy but instead factors into the crowning equation of this paper 

(12) (E2-(j2+2)E + !)(E2-jE-l)(E-l)Ghk = 0, 
where E is the forward shift operator. Note that the first, second.and third parentheses of (12) are, in fact, the recur-
rences for bisected coprime, coprime and constant sequences respectively! A more useful expression in terms of for-
ward and backward difference operators is 

(13) (82-I)(A+V-l)AGj>k = 0 = (A3-2A2 + A-M82)Gj)k 

only if/ = 7. Now (12) is more general than (1) and (13) is more general than { ^ j = . -79 ,42 ,10 ,9 ,2 ,4 ,3 ,6 ,10 , 
21,46,108, - . An example of (13) is the sequence 

(13a) 0, 0, 0, 0 , 1 , 5, 18, 56, 162,450,1221, 3267,8668, 22880, •••, 

60204,158108,414729, 

whose falling diagonal, A *, from the first zero is 

(13b) 0 , 0 , 0 , 0 , 1 , 0 , 3 , 0 , 8 , 0 , 2 1 , 0 , - . . 

Hence to obtain/ order 6 numbers some IC must be introduced. First some simplifications. When/ = 7, then Eqs. 
(9a), (10) and (11) become 

(9b) (82-l)Gk = 5Fk-3Lk-1 = -(1+2Lk_2) 
(10a) <\)Gk+1 = \pGk + \PGk_1 + f 

(11a) Gk+i = 5Gk - 7G},.! + G^2
 + 3G^3 - Gk-4 > 

respectively. Note that (13a) was calculated by (13) and checked by (11a). Also note that (11), (12), (13), (11a) are 
fifth-degree recurrences. Gould [5] found (11a) independently. Directly from (10) one can find the modified 
recurrence 
(14) GjM1 = (j2+j+2)Gj>k-(j3 + 2/)Gj)k-l ~ 0'2 ~ J +2)Gj>k_2 + Gj)k_3 +j3 , 
which, when/= 7, becomes 

(14a) Gk+1 = 4Gh-3Gk_l-2Gk_2 + Gk_3 + 1 

and from this latter it is easy to derive the exquisite 

(14b) 84Gk+2 = 382Gk+1-Gk + l . 
At this point the reader should study Tables 1 and 2. Now a curious fact results from Corollary 1 which I rewrite as 

Corollary 1. \p (Gj}k+i + Gj)k_2) = (1 +MGj>k + (1 ~ MGj>k-i 

This says that making both / and k negative reproduces the same recurrence. To be specific replace/ by - /and let 
n = (1 - k) and the Corollary regenerates itself. Thus 4, 3, 6,10,21,46, - has the same recurrence as 4,4 ,9 ,18,42, 
101,--.See Table 1. 

Lemma. The zeroth term of all {Gj} equals the constant 4. 

The proof is direct from Eqs. (1) through (3a). Omitting the subscript/for simplicity and recalling that Pjj = 1 for 
all/we have: 

Go = 1+Po+P-l = 1+Pi+P-i+P-i = 1+3Pi =4 

(15) Gj>0 = 4. 

From (12) of paper [3] one may easily find 

(16a,b) Gjfl = (j+2) and b2Gji0 = Gj}1AGjy0 
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Table 1 
Array of G^k Numbers 

j/k - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 
6 2027452 53120 1444 32 4 8 76 1640 54796 2034896 
5 510354 18761 729 22 4 ti 54 843 19629 513402 
4 98532 5392 324 14 4 6 36 382 5796 99574 
3 13090 1154 121 8 4 5 22 146 1309 13364 
2 1020 156 36 4 4 4 12 44 204 1068 
1 42 10 9 2 4 3 6 10 21 46 108 
0 4 2 4 2 4 2 4 2 4 2 4 

- 1 42 18 9 4 4 1 6 2 21 24 108 
- 2 1020 184 36 8 4 0 12 16 204 804 
- 3 13090 1226 121 14 4 - 1 22 74 1309 12578 

TabSe 2 
The Table of D ifferences of Gk 

9 - 2 4 3 6 10 21 46 108 ••• 
- 7 2 - 1 3 4 11 25 62 

9 - 3 4 1 7 14 37 
-12 7 - 3 6 7 23 

19 -10 9 r 16 
46 -29 19 - 8 15 

-75 48 -27 23 2 
-200 123 -75 -21 

323 
leaving a fourth initial condition to be chosen in order to define Gj^. We may now take this to be 

(16c) 32Gj}1 = 2Gj_1. 

One can also show from (1) or from (12) of paper [3] that 

(17) Gj}_2 = (I2 +2)2 and Gjt_i = j(j - 1) + 2 = G^+U.t 
for all integer/. At this point it will help the reader to go through an example such as the/= 3 case beginning with 
p3,k='®. 1»3,10,33,109,360,1189,3927,-. In fact relations stronger than Corollary 1 exist as is evident from 
Table 1 where we see that 

(18) Gj)k+Gj„k = G^k+G.j.y, 

for all integer/ and k and indeed a special case follows if e is even 

(19) Gj>e = G.jt€ 

Now (18) and (19) are easily proven from (1) and the odd/even properties of F and L sequences. 

DIVISIBILITY PROPERTIES 

For the study of divisibility properties we are able to rewrite (1) by substituting (6) of [3 ] , 
P2n-1 = PnPn-1 ~ COS (iw) , 

into it giving 
(20) Gjtk = Plk(l+Pj,k-l> + 1+(-1>k+l 

(20a) Gk = Lkd + Fk.tJ+l + f-V^1 . 
Hence the divisibility properties of the even Gk are known since Jarden [4, p. 97] has tabulated the divisors of (1 + 
Fn). The divisibility of the odd G^ is involved. Three divides G^ at intervals of eight starting with 
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k = • ••- / , 1,9,17,25,33,-

and five divides G^ at intervals of twenty starting with k = — 3 , 17, 37, ---and proceeding in both directions. Divisi-
bility properties are left for a later paper. 

Conjecture 1. If Gk is prime then \k\ is prime. 

Conjecture 2. The number of primes in [GI } is infinite. 

The known primes are G_$ = 79, G_i =2, G± =3, Gj = 263. G$i may be prime. 
The sequence of G_£ is interesting. The first thirteen G_k numbers are placed immediately below their correspond-

ing Gk numbers beginning with k = 1 in both cases. 

(21) 3,6,10,21,46,108,263, 658,1674, 4305,11146, 28980, 75547,-

2,9,10,42,79,252, 582,1645,4106,11070,28459, 75348,195898, -. 

A glance at these G numbers provide another symmetry property, 

(22) G-2n-G2n = F4n and Gd + G„d = L2d+2 for d odd. 
And more generally it is rather easy to show via (20) that 

(23) Gj-2n ~ Gj}2n = Pj,2n(Pj,2n+l ~Pj,2n-lt = JPj,4n 

(24) Gj,d + Gj}„d = P*2d+2 for d odd 

DIFFERENCES OF Gk 

We need the following: 

(25) VkHn = Hn_2k and so lkHh = H_k 

(26) l2kBn = Bn.k and V2k+1Bn = MBn.k 

(27) VkAn = signum (An)\An+k\, 

where Bn is any bisection of Hn, and where (25) and (26) are easily derivable from 

(28) Hn+1 = Hn + Hn_i, any H0 and Ht, 

and where An is a two-point sequence with alternating signs satisfying 

(29) An+1 = -An+An-i 

corresponding to j = -1 in (3), and signum is the sign function. 
Then application of (25) and (26) to (1) immediately gives 

(30) VkGk = Fk-i+(-UkLk, 

which becomes -Pk+i in the odd k case. Note that these numbers lie along a falling diagonal from GQ = 4 in Table 2. 
Equation (30) introduces a significant simplicity into the Gk numbers. Note that (30) is reminiscent of the definition 
of the Bell numbers, to wit: 

(31) V ^ B e l l , , = Belln_i, n > 2. 

Likewise one may also show that 

(32) V^Gfe = Fk-4 for odd k > 3 

and these numbers 1,1,2,5, - a rea bisection of the falling diagonal from Gi = 3. Note that all falling diagonals :3FE 
two bisected sequences, Bn, and satisfy for all k and all n > 1, 

(33) An+4Gk = 3An+2Gk-AnGk . 

I did not expect to find upon glancing at the central differences of GQ that they would be: - 3 , 19 , - 75 , ••• almost 
Lucas numbers. We may write 
(34) d2nG0 = l2nGn = 1 + (-1)nL3n . 
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This may be easily derived from (1) withy = 1 by applying (25). The critical step is 

V2kLk = Lk_4k = L-3k 
according to (25). We obtain 
(35a) V^Gu = L_3k+2, k > 1 

(35b) V2kGk = L_3k+F_u k > 1 

(35c) V2k+1Gk - U3k-2 + ^2, k>U, 
where, of course, F_2 = - 1 and F_f = 1. Equations (35) prove what is obvious by looking at Table 2, namely if we 
make a zig-zag below the 4 entry we obtain the sequence: - 1 , 2 , - 3 , 7 , -12 ,19 , -29 ,46 , -75 , 123, -wh ich is al-
most the Lucas sequence. This makes the whole sequence easy to generate by hand. Finally the choice of letter for 
these sequences was Gould's [1] who suggested my name for them after seeing my paper [6 ] , 

The author appreciates some comments by Zeitlin [8] concerning (14) and (23). Zeitlin [7] has also pointed out 
that the subscript of the subscript of the last term of Eq. (12) of [6] should be (k - 1) and not (k - 2). This mis? 
print is obvious from the expansion in (13) of [6 ] . 

Having found that the messy looking G^y, sequence actually satisfies the near Fibonacci relationships (10) and (12) 
and further that the Lucas numbers have made their presence known, I am impelled to write down an old haiku of 
mine in which even the numbers of syllables in each line, namely 3, 2, 5, 7 are themselves a Fibonacci sequence. 

PHI 
Multiply 
Or add 
We always reach phi 
Symmetries we perpetrate. 
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[Continued from page 165.] * * * * * * * 

where the /^column of Cn is t h e / ^ row of Pascal's triangle adjusted to the main diagonal and the other entries are 
0's. Find Cn-A

T. 
n n 

Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 
A. Let Bn = An-A^. Let a^ and b{j be the entries in the ith row ar\djth column of An and Bn, respectively. Sim-

ilarly, let a?/ be t h e / ^ entry of AT. Then 
' i ~ 1 > if i>j; 

= o elsewhere; 
therefore, 

< = ({=!)'"</ 
= o - elsewhere. 

[continued on page 183.] 


