A PRIMER FOR THE FIBONACCI NUMBERS XVII: GENERALIZED FIBONACCI NUMBERS SATISFYING $u_{n+1} u_{n-1}-u_{n}^{2}= \pm 1$

V. E. HOGGATT, JR., and MARJORIE BIC KNELL-JOHNSON
 San Jose State University, San Jose, California 95192

There are many ways to generalize the Fibonacci sequence. Here, we examine some properties of integral sequences $\left\{u_{n}\right\}$ satisfying

$$
\begin{equation*}
u_{n+1} u_{n-1}-u_{n}^{2}=(-1)^{n}, \tag{1}
\end{equation*}
$$

where necessarily $u_{0}=0$ and $u_{1}= \pm 1$. The Fibonacci polynomials $f_{n}(x)$ given by

$$
\begin{equation*}
f_{n+1}(x)=x f_{n}(x)+f_{n-1}(x), \quad f_{0}(x)=0, \quad f_{1}(x)=1 \tag{2}
\end{equation*}
$$

evaluated at $x=b$ provide special sequences $\left\{u_{n}\right\}$. Of course, $f_{n}(1)=F_{n}$, the Fibonacci numbers $0,1,1,2,3,5, \cdots$, and $f_{n}(2)=P_{n}$, the Pell numbers $0,1,2,5,12,29, \ldots$. Divisibility properties of the Fibonacci polynomials [1] and properties of the Pell numbers and the general sequences $\left\{f_{n}(b)\right\}$ [2] have been examined in earlier Primer articles.
In the course of events, we will completely solve the Diophantine equations $y^{2}-\left(a^{2} \pm 4\right) x^{2}= \pm 4$ and show that all of our generalized Fibonacci polynomials are special cases of Chebyshev polynomials of the first and second kinds.

$$
\text { 1. SOLUTIONS TO } y^{2}-\left(a^{2}+4\right) x^{2}= \pm 4
$$

Theorem 1. Let $\left\{u_{n}\right\}$ be a sequence of integers such that $u_{n+1} u_{n-1}-u_{n}^{2}=(-1)^{n}$ for all integers n. Then there exists an integer a such that
(3)

$$
u_{n+2}=a u_{n+1}+u_{n} .
$$

Proof. Set

$$
u_{2}=a u_{1}+b u_{0}, \quad u_{3}=a u_{2}+b u_{1}
$$

for some real numbers a and b. By Cramer's rule,

$$
b=\left|\begin{array}{ll}
u_{1} & u_{2} \\
u_{2} & u_{3}
\end{array}\right| \div\left|\begin{array}{ll}
u_{1} & u_{0} \\
u_{2} & u_{1}
\end{array}\right|=\frac{u_{1} u_{3}-u_{2}^{2}}{u_{1}^{2}-u_{0} u_{2}}=1
$$

since $u_{1} u_{3}-u_{2}^{2}=(-1)^{2}$ and $u_{0} u_{2}-u_{1}^{2}=(-1)^{1}$ by definition of $\left\{u_{n}\right\}$. Thus, a is an integer. In fact, $u_{2}=a u_{1}+u_{0}$ and $u_{3}=a u_{2}+u_{1}$ yield

$$
a=\frac{u_{3}-u_{1}}{u_{2}}=\frac{u_{2}-u_{0}}{u_{1}}
$$

Assume that $u_{n+1}=a u_{n}+u_{n-1}$. Then

$$
a=\frac{u_{n+1}-u_{n-1}}{u_{n}}
$$

and

$$
a u_{n+1}+u_{n}=\frac{u_{n+1}-u_{n-1}}{u_{n}} \cdot u_{n+1}+u_{n}=\frac{u_{n+1}^{2}-u_{n-1} u_{n+1}+u_{n}^{2}}{u_{n}}=\frac{u_{n+1}^{2}+(-1)^{n+1}}{u_{n}}
$$

But, $u_{n+2} u_{n}-u_{n+1}^{2}=(-1)^{n+1}$ by definition of the sequence, so that

$$
u_{n+2}=\left[u_{n+1}^{2}+(-1)^{n+1}\right] / u_{n}, \quad \text { and } \quad u_{n+2}=a u_{n+1}+\dot{u}_{n}
$$

for an integer a by the Axiom of Mathematical Induction.
Corollary 1.1. The sequence $\left\{u_{n}\right\}$ has starting values $u_{0}=0, u_{1}= \pm 1$.

Proof. By Theorem $1, u_{2}=a u_{1}+u_{0}$. Thus,

$$
u_{2}^{2}=a^{2} u_{1}^{2}+2 a u_{1} u_{0}+u_{1}^{2}=a u_{1}\left(a u_{1}+u_{0}\right)+u_{0}^{2}=a u_{1} u_{2}+u_{0}^{2} .
$$

Since also $u_{0}=u_{2}-a u_{1}$, substituting above for u_{0}^{2}, we have

$$
u_{2}^{2}=a u_{1} u_{2}+\left(u_{2}^{2}-2 a u_{1} u_{2}+a^{2} u_{1}^{2}\right), \quad 0=a u_{1}\left(a u_{1}-u_{2}\right)
$$

Now, either $a=0$, or $u_{1}=0$, or $u_{2}=a u_{1}$. If $a=0, u_{2}=u_{0}$, and from $u_{2} u_{0}-u_{1}^{2}=-1, u_{0}=0$ and $u_{1}= \pm 1$ give the only possible solutions. If $u_{1}=0$, then $u_{2}=u_{0}$ leads to $u_{2}^{2}=-1$, clearly impossible for integers. If $u_{2}=a u_{1}$, then $u_{2}=a u_{1}=a u_{1}+u_{0}$ forces $u_{0}=0$, and again $u_{1}= \pm 1$.
Theorem 2. Let $\left\{u_{n}\right\}$ be a sequence of integers such that $u_{n+1} u_{n+1}-u_{n}^{2}=(-1)^{n}$ for all n. Then $x=u_{n}$ and $y=u_{n+1}+u_{n-1}$ are solutions for the Diophantine equation

$$
\begin{equation*}
y^{2}-\left(a^{2}+4\right) x^{2}= \pm 4 \tag{4}
\end{equation*}
$$

where also $u_{n+1}=a u_{n}+u_{n-1}$.
Proof. From Theorem 1, $u_{n+1}=a u_{n}+u_{n-1}$. If $y=u_{n+1}+u_{n-1}$ and $x=u_{n}$, then

$$
u_{n+1}=y-u_{n-1}=y-\left(u_{n+1}-a u_{n}\right)=y-u_{n+1}-a x
$$

yielding

$$
u_{n+1}=(y-a x) / 2
$$

Then

$$
u_{n-1}=y-u_{n+1}=y-(y-a x) / 2=(y+a x) / 2 .
$$

By definition of the sequence $\left\{u_{n}\right\}$,

$$
\begin{aligned}
& u_{n+1} u_{n-1}-u_{n}^{2}=(-1)^{n} \\
& \frac{y+a x}{2} \cdot \frac{v-a x}{2}-x^{2}= \pm 1 \\
& \left(y^{2}-a^{2} x^{2}\right)-4 x^{2}= \pm 4 \\
& y^{2}-\left(a^{2}+4\right) x^{2}= \pm 4
\end{aligned}
$$

Now, let the generalized Lucas and Fibonacci numbers $£_{n}$ and ξ_{n} be defined in terms of Fibonacci polynomials as in Eq. (2):

$$
\begin{gather*}
\mathcal{L}_{n}=f_{n+1}(a)+f_{n-1}(a) \tag{5}\\
F_{n}=f_{n}(a) .
\end{gather*}
$$

Since [2]

$$
\begin{gather*}
f_{n+1}(x) f_{n-1}(x)-f_{n}^{2}(x)=(-1)^{n}, \tag{6}\\
L_{n}^{2}-\left(a^{2}+4\right) \bar{F}_{n}^{2}= \pm 4 \tag{7}
\end{gather*}
$$

by Theorem 2. Thus, the generalized Lucas and Fibonacci numbers give solutions to the Diophantine equation (4).
Theorem 3. The generalized Lucas and Fibonacci numbers $£_{n}$ and z_{n} are the only solutions to the Diophantine equation

$$
\begin{equation*}
y^{2}-\left(a^{2}+4\right) x^{2}= \pm 4 \tag{4}
\end{equation*}
$$

Proof. Now, $y^{2}-\left(a^{2}+4\right) x^{2}=+4$ has solution $x=0, y=2$, as well as a solution $x=1, y=3$ if $a=1$, but no solution for $x=1$ when $a>1$. The other equation $y^{2}-\left(a^{2}+4\right) x^{2}=-4$ has solution $x=1, y=a$. The case $a=1$ was solved by Ferguson [3]. We use a method of infinite descent which is an extension of the method of Ferguson [3], and take $a>1, x>1$. Thus, $y^{2}-\left(a^{2}+4\right) x^{2}= \pm 4$ implies that

$$
a x<y<(a+2) x
$$

since
forces

$$
y^{2}=\left(a^{2}+4\right) x^{2} \pm 4=a^{2} x^{2}+4 x^{2} \pm 4<a^{2} x^{2}+4 a x^{2}+4 x^{2}
$$

,

$$
(a x)^{2}<y^{2}<(a+2)^{2} x^{2}
$$

Since y and $a x$ must have the same parity, let

$$
y=a x+2 t, \quad 1 \leqslant t<x .
$$

Assume that x is the smallest non-Fibonacci solution. Replace y with $a x+2 t$ in (4), yielding

$$
\begin{gathered}
(a x+2 t)^{2}-\left(a^{2}+4\right) x^{2} \pm 4=0 \\
4 x^{2}-4 a x t-4 t^{2} \pm 4=0
\end{gathered}
$$

Solve the quadratic for $2 x$, yielding

$$
2 x=a t \pm \sqrt{\left(a^{2}+4\right) t^{2} \pm 4}
$$

But, $2 x$ is an integer, and therefore

$$
\left(a^{2}+4\right) t^{2} \pm 4=s^{2}
$$

for an integer s so that $t=u_{n}$ and $s=u_{n+1}+u_{n-1}$ are solutions by Theorem 2. Since $x>0$,

$$
\begin{aligned}
2 x & =a t+\sqrt{\left(a^{2}+4\right) t^{2} \pm 4} \\
& =a t+s \\
& =a u_{n}+\left(u_{n+1}+u_{n-1}\right) \\
& =\left(a u_{n}+u_{n-1}\right)+u_{n-1} \\
& =2 u_{n+1}
\end{aligned}
$$

so that $x=u_{n+1}$. But, if x is the smallest non-Fibonacci solution, then x cannot be the next larger Fibonacci solution after t. This is a contradiction, and there is no first non-Fibonacci solution. Thus, the Diophantine equation

$$
y^{2}-\left(a^{2}+4\right) x^{2}= \pm 4
$$

has solutions in integers if and only if

$$
y= \pm £_{n}=f_{n+1}(a)+f_{n-1}(a) \quad \text { and } \quad x= \pm f_{n}=f_{n}(a) .
$$

2. SPECIAL SEQUENCES $\left\{u_{n}\right\}$ AND THE EQUATION $y^{2}-\left(a^{2}-4\right) x^{2}= \pm 4$

Now, all of these sequences $\left\{u_{n}\right\}$ have starting values $u_{0}=0$ and $u_{1}= \pm 1$. It in interesting to note some special cases. Notice that the sequence

$$
\ldots, 1,0,1,0,1,0,1,0,1,1,2,3,5, \ldots
$$

due to Bergum [4] satisfies $u_{0}=0, u_{1}=1$, and

$$
u_{n+1} u_{n-1}-u_{n}^{2}=(-1)^{n}
$$

where the left-hand part of the sequence has

$$
u_{n+2}=u_{n}=0 \cdot u_{n+1}+u_{n}
$$

while the right-hand part has

$$
u_{n+2}=1 \cdot u_{n+1}+u_{n} .
$$

It is interesting to note that special cases of the sequences $\left\{u_{n}\right\}$ satisfying $u_{n+1} u_{n-1}-u_{n}^{2}=(-1)^{n}$ occur from [2]

$$
\begin{equation*}
\tau_{n-k} £_{n+k}-\tau_{n}^{2}=(-1)^{n+k+1} v_{k}^{2} \tag{8}
\end{equation*}
$$

for the generalized Fibonacci numbers given in Eq. (5). Let

$$
f_{n k-k-1}=x_{n k+k}^{2}=(-1)^{n k+k+1_{-}}{ }_{k}^{2}
$$

be rewritten

$$
\frac{\tau(n-1) k}{\tau_{k}} \frac{\tau(n+1) k}{\tau_{k}}-\frac{\tau_{n k}^{2}}{\tau_{k}^{2}}=(-1)^{(n+1) k+1}
$$

Now, since $\tau_{n k} / \tau_{k}$ is known to be an integer [1], let $u_{n}=\tau_{n k} / \tau_{k}$, and the equation above becomes

$$
u_{n+1} u_{n-1}-u_{n}^{2}=(-1)^{(n+1) k+1}
$$

where $(-1)^{(n+1) k+1}$ is $(-1)^{n}$ if k is odd but (-1) if k is even. In particular, if $k=2$, the sequence of Fibonacci numbers with even subscripts, $\{0,1,3,8,21, \cdots\}$, gives a solution to $u_{n+1} u_{n-1}-u_{n}^{2}=-1$. Another solution is $u_{n}=n$, since $(n+1)(n-1)-n^{2}=-1$ for all n.
Is there a sequence $\left\{u_{n}\right\}$ of positive terms for which $u_{n+1} u_{n-1}-u_{n}^{2}=+1$? Considering Fibonacci numbers with odd subscripts, $\{1,2,5,13,34, \ldots\}$, we observe that $u_{n}=F_{2 n+1}$ is a solution, and that $u_{n+1}=3 u_{n}-u_{n-1}$, Using $u_{n+1} u_{n-1}-u_{n}^{2}=1$ and solving $u_{n+1}=a u_{n}+b u_{n-1}$ as in Theorem 1 yields $u_{n+1}=a u_{n}-u_{n-1}$. If we let $y=u_{n+1}-$ u_{n-1} and $x=u_{n}$, proceeding as in Theorem 2, we are led to the Diophantine equation $y^{2}-\left(a^{2}-4\right) x^{2}=-4$. We summarize as
Theorem 4. If $\left\{u_{n}\right\}$ is a sequence of integers such that

$$
u_{n+1} u_{n-1}-u_{n}^{2}=+1
$$

for all n, then there exists an integer a such that

$$
u_{n+2}=a u_{n+1}-u_{n}
$$

and $y=u_{n+1}-u_{n-1}$ and $x=u_{n}$ are solutions of the Diophantine equation
(9)

$$
y^{2}-\left(a^{2}-4\right) x^{2}=-4
$$

Theorem 5. The odd-subscripted Fibonacci and Lucas numbers give the only solutions to the Diophantine equation
(9)

$$
y^{2}-\left(a^{2}-4\right) x^{2}=-4
$$

Proof. We show that (9) has no integral solutions if $|a| \neq 3$, proceeding in the manner of the proof of Theorem 3. Here,

$$
(a-2) x<y<a x
$$

Since y and $a x$ must have the same parity, let

$$
y=a x-2 t, \quad 1 \leqslant t<x .
$$

Notice that, if $x=1, y^{2}-\left(a^{2}-4\right)=-4$ becomes $a^{2}-y^{2}=8$, which is solved only by $a=3, y=1$.
Let x be the first solution greater than one: Replace y with $a x-2 t$ in (9), yielding

$$
\begin{gathered}
(a x-2 t)^{2}-\left(a^{2}-4\right) x^{2}+4=0 \\
4 x^{2}-4 a x t+4 t^{2}+4=0
\end{gathered}
$$

Solving the quadratic for $2 x$ gives

$$
2 x=a t \pm \sqrt{\left(a^{2}-4\right) t^{2}-4}
$$

Since $2 x$ is integral, we must have $\left(a^{2}-4\right) t^{2}-4=s^{2}$ for some integer s. By Theorem $4, t=u_{n}$ is a solution where $t>1$. But, since x is the first solution greater than 1 , and $x>t$, we have a contradiction, and

$$
y^{2}-\left(a^{2}-4\right) x^{2}=-4
$$

is not solvable in positive integers unless $a=3$. When $a=3$, the equation becomes $y^{2}-5 x^{2}=-4$, which is solved only by

$$
y=L_{2 n+1}, \quad x=F_{2 n+1}
$$

odd-subscripted Lucas and Fibonacci numbers [5].

Theorem 6. If $\left\{u_{n}\right\}$ is a sequence of integers such that

$$
u_{n+1} u_{n-1}-u_{n}^{2}=-1
$$

for all n, then there exists an integer a such that

$$
u_{n+2}=a u_{n+1}-u_{n} \quad \text { and } \quad y=u_{n+1}-u_{n-1} \quad \text { and } \quad x=u_{n}
$$

are solutions of the Diophantine equation
(10)

$$
y^{2}-\left(a^{2}-4\right) x^{2}=+4
$$

Proof. Proceed as in Theorem 4.
Theorem 7. The Fibonacci and Lucas numbers with even subscripts give solutions to the Diophantine equation

$$
y^{2}-\left(a^{2}-4\right) x^{2}=+4
$$

Proof. Set $a=3$ and refer to Lind [5].

3. GENERALIZED FIBONACCI POLYNOMIALS

Next, in order to write solutions for the Diophantine equation (10), we consider a type of generalized Fibonacci polynomial. Let
(11)

$$
h_{0}(x)=0, \quad h_{1}(x)=1, \quad \text { and } \quad h_{n+2}(x)=x h_{n+1}(x)-h_{n}(x)
$$

and

$$
g_{0}(x)=2, \quad g_{1}(x)=x
$$

where

$$
g_{n+2}(x)=x g_{n+1}(x)+g_{n-1}(x) .
$$

We note that $\left\{h_{n}(a)\right\}$ is a special sequence $\left\{u_{n}\right\}$ since

$$
h_{n+1}(a) h_{n-1}(a)-h_{n}^{2}(a)=-1 .
$$

Then

$$
\begin{gathered}
h_{n}(x)=\frac{a_{1}^{n}(x)-a_{2}^{n}(x)}{a_{1}(x)-a_{2}(x)}, \quad x \neq 2 ; \quad h_{n}(2)=n \\
g_{n}(x)=a_{1}^{n}(x)+a_{2}^{n}(x)=h_{n+1}(x)-h_{n-1}(x),
\end{gathered}
$$

where $a_{1}(x)$ and $a_{2}(x)$ are roots of

$$
\lambda^{2}-\lambda x+1=0 .
$$

(By way of comparison, the Fibonacci polynomials $f_{n}(x)$ have the analogous relationship to the roots of

$$
\lambda^{2}-\lambda x-1=0
$$

Also note that $h_{n}(3)=F_{2 n}$.)
It is easy to establish from $a_{1}(x) a_{2}(x)=1$ that

$$
\begin{aligned}
& 2 a_{1}^{n}=g_{n}(x)+\left[a_{1}(x)-a_{2}(x)\right] h_{n}(x) \\
& 2 a_{2}^{n}=g_{n}(x)-\left[a_{1}(x)-a_{2}(x)\right] h_{n}(x)
\end{aligned}
$$

with $a_{1}(x)-a_{2}(x)=\sqrt{x^{2}-4}$. From this it readily follows that

$$
1=a_{1}^{n}(x) a_{2}^{n}(x)=\left[g_{n}^{2}(x)-\left(x^{2}-4\right) h_{n}^{2}(x)\right] / 4
$$

or

$$
g_{n}^{2}(x)-\left(x^{2}-4\right) h_{n}^{2}(x)=+4 .
$$

Now, we are interested in the sequences of integers formed by evaluating $h_{n}(x)$ and $g_{n}(x)$ at $x=a$. Thus

$$
\begin{equation*}
g_{n}^{2}(a)-\left(a^{2}-4\right) h_{n}^{2}(a)=+4 . \tag{12}
\end{equation*}
$$

and we do have solutions to

$$
y^{2}-\left(a^{2}-4\right) x^{2}=+4
$$

Theorem 8. The generalized Fibonacci numbers $\left\{h_{n}(a)\right\}$ and generalized Lucas numbers $\left\{g_{n}(a)\right\}$ provide the only solutions to the Diophantine equation

$$
\begin{equation*}
y^{2}-\left(a^{2}-4\right) x^{2}=+4 \tag{10}
\end{equation*}
$$

Proof. Note that if $x=1$, then $y=a$, and if $x=0$, then $y=2$, Now one can proceed as follows. We can write, as before,

$$
(a-2) x<y \leqslant a x .
$$

Clearly, y and $a x$ must have the same parity, so that we can let

$$
y=a x-2 t, \quad 1 \leqslant t<x
$$

where x is the first positive integer which is greater than 1 , not equal to $h_{m}(a)$, and a solution. Then, as before, replace y with $a x-2 t$ in (10), yielding

$$
\begin{gathered}
(a x-2 t)^{2}-\left(a^{2}-4\right) x^{2}-4=0 \\
4 x^{2}-4 a x t+4 t^{2}-4=0
\end{gathered}
$$

Solving the quadratic for $2 x$,

$$
\begin{equation*}
2 x=a t \pm \sqrt{\left(a^{2}-4\right) t^{2}+4} \tag{13}
\end{equation*}
$$

Since $2 x$ is an integer, there exists an integer s such that

$$
\left(a^{2}-4\right) t^{2}+4=s^{2}
$$

with a solution given by

$$
t=h_{n}(a) \quad \text { and } \quad s=g_{n}(a)=h_{n+1}(a)-h_{n-1}(a)
$$

by Eq. (12). Then, (13) taken with the plus sign gives

$$
2 x=a h_{n}(a)+h_{n+1}(a)-h_{n-1}(a)=2 h_{n+1}(a)
$$

and $x=h_{n+1}(a)$, a contradiction, since x was defined as not having the form $h_{m}(a)$.
Next, we consider the case of Eq. (13) taken with the minus sign. The cases $a=1$ or $a=0$ are not very interesting. We need a lemma:
Lemma. For $a>1$, the sequence $\left\{h_{n}(a)\right\}$ is a strictly increasing sequence.
Proof of the Lemma.

$$
h_{0}(a)=0, \quad h_{1}(a)=1, \quad h_{2}(a)=a, \quad h_{n+2}(a)=a h_{n+1}(a)-h_{n}(a) .
$$

Since

$$
h_{n+1}(a)=a h_{n}(a)-h_{n-1}(a)>(a-1) h_{n}(a)
$$

if

$$
h_{n-1}(a)<h_{n}(a)
$$

then

$$
h_{n+1}(a)>h_{n}(a)
$$

Thus, if we choose the minus sign in Eq. (13), then we have

$$
\begin{aligned}
2 x & =a h_{n}(a)-\left(h_{n+1}(a)-h_{n-1}(a)\right) \\
& =a h_{n}(a)-h_{n+1}(a)+h_{n-1}(a)=2 h_{n-1}(a)
\end{aligned}
$$

or $x=h_{n-1}(a)$ which contradicts the restriction that $t<x$. Thus, we must choose the plus sign in (13), which yielded $x=h_{n+1}(a)$. So, even if x is the first integer greater than one for which we have a solution for

$$
y^{2}-\left(a^{2}-4\right) x^{2}=+4
$$

and where $x \neq h_{m}(a)$, we find $x=h_{n+1}(a)$. This shows that there is no first positive integer which solves Eq. (10) which is not of the form $x=h_{m}(a)$. This concludes the proof of Theroem 8.

We note that the case $a=2$ yields $y= \pm 2$ and x any integer. The recurrence

$$
u_{n+2}=2 u_{n+1}-u_{n}
$$

is satisfied by any arithmetic progression $b, b+d, b+2 d, \cdots, B+n d, \cdots$. However, the restriction

$$
u_{n+1} u_{n-1}-u_{n}^{2}=-1
$$

limits these to the integers $n=u_{n}$.
In summary, we have set down the complete solutions to the Diophantine equations

$$
y^{2}-\left(a^{2} \pm 4\right) x^{2}= \pm 4
$$

$y^{2}-\left(a^{2}+4\right) x^{2}$ has solution $x=0, y=2$, for all a. For

$$
y^{2}-\left(a^{2}+4\right) x^{2}=-4
$$

we get $x=1, y=a$. Both solutions are starting pairs for the recurrence

$$
u_{n+2}=a u_{n+1}+u_{n},
$$

and $y=2, a, \cdots$ leads to $f_{n+1}(a)+f_{n-1}(a)$, and $x=0,1, \ldots$, leads to $f_{n}(a)$, where $f_{n}(x)$ are the Fibonacci polynomials. Here, $u_{n+1} u_{n-1}-u_{n}^{2}=(-1)^{n}$ lead to $y^{2}-\left(a^{2}+4\right) x^{2}= \pm 4$ via $u_{n+2}=a u_{n+1}+u_{n}$. But either

$$
u_{n+1} u_{n-1}-u_{n}^{2}=-1 \quad \text { or } \quad u_{n+1} u_{n-1}-u_{n}^{2}=+1
$$

lead to the recurrence $u_{n+2}=a u_{n+1}-u_{n}$, and lead to $y^{2}-\left(a^{2}-4\right) x^{2}= \pm 4$. Now $y^{2}-\left(a^{2}-4\right) x^{2}=+4$ allows x $=0, y=2$ and $x=1, y=a$ as starting solutions, where $x=0,1, \cdots$, leads to $h_{n}(a)$, and $y=2, a, \cdots$, leads to $h_{n+1}(a)-$ $h_{n-1}(a)$ for the generalized Fibonacci polynomials $h_{n}(x)$. Finally, $y^{2}-\left(a^{2}-4\right) x^{2}=-4$ has solution $x=1, y=1$ when $|a|=3$, but no solution if $|a| \neq 3$. This then becomes $y^{2}-5 x^{2}=-4$ which is satisfied only by the oddly subscripted Fibonacci and Lucas numbers, which satisfy the recurrence $u_{n+1}=3 u_{n}-u_{n-1}$, so that

$$
F_{2 n+1}=h_{n+1}(3)-h_{n}(3),
$$

and, of course, $F_{2 n+1}=f_{2 n+1}(1)$. In all cases, the only solutions arise from sequences of Fibonacci polynomials $f_{n}(x)$ evaluated at $x=a$, or generalized Fibonacci polynomials $h_{n}(x)$ evaluated at $x=a$. We can then state
Theorem 9. The Diophantine equations

$$
\begin{aligned}
& y^{2}-\left(a^{2}-4\right) x^{2}= \pm 4 \\
& y^{2}-\left(a^{2}+4\right) x^{2}= \pm 4
\end{aligned}
$$

have solutions in positive integers if and only if

$$
y^{2}-\left(a^{2}-4\right) x^{2}=-4
$$

has a solution $x=1$ or

$$
y^{2}-\left(a^{2}+4\right) x^{2}=-4
$$

has a solution $x=1$. Every solution is given by terms of a sequence of Fibonacci polynomials evaluated at $a,\left\{f_{n}(a)\right\}$, or generalized Fibonacci polynomials evaluated at $x=a,\left\{h_{n}(a)\right\}$.

4. CHEBYSHEV POLYNOMIALS

There are Chebyshev polynomials of two kinds:

$$
\begin{aligned}
& U_{n+2}(x)=2 x U_{n+1}(x)-U_{n}(x) \\
& T_{n+2}(x)=2 x T_{n+1}(x)-T_{n}(x)
\end{aligned}
$$

with $T_{0}(x)=1$ and $T_{1}(x)=x$, and $U_{0}(x)=1$ and $U_{1}(x)=2 x$. The $T_{n}(x)$ are the Chebyshev polynomials of the first kind, and the $U_{n}(x)$ are the Chebyshev polynomials of the second kind [8]. There are also related polynomials

$$
S_{n}(x)=U_{n}(x / 2) \quad \text { and } \quad C_{n}(x)=2 T_{n}(x / 2)
$$

which are tabulated in [8]. Our $h_{n}(x)$ and $g_{n}(x)$ are related to $S_{n}(x)$ and $C_{n}(x)$ as follows:

$$
h_{n}(x)=S_{n+1}(x) \quad \text { and } \quad g_{n}(x)=C_{n}(x)
$$

An early article by Paul F. Byrd [10] explains the close connection between Fibonacci and Lucas polynomials and the $U_{n}(x)$ and $T_{n}(x)$. See also Hoggatt [9] , and Buschman [11].

5. ANOTHER CONSEQUENCE OF $u_{n+1} u_{n-1}-u_{n}^{2}=(-1)^{n}$

Finally, we examine another consequence of

$$
u_{n+1} u_{n-1}-u_{n}^{2}=(-1)^{n}
$$

We note that

$$
\left(u_{n}, u_{n+1}\right)=1, \quad\left(u_{n}, u_{n-1}\right)=1 .
$$

Note that $1,-1,-u_{n-1}, u_{n-1}$ are incongruent modulo $u_{n}, u \geqslant 5$, and form a multiplicative subgroup of the multiplicative group of integers modulo u_{n}. Since the order of the multiplicative group of integers $\bmod u_{n}$ is $\varphi\left(u_{n}\right)$, where $\varphi(n)$ denotes the number of integers less than n and prime to n, and since the order of subgroup divides the order of a group, $4 \mid \varphi\left(u_{n}\right)$. This method of proof was given by Montgomery [6] as solution to the problem of showing that $\varphi\left(F_{n}\right)$ is divisible by 4 if $n \geqslant 5$. The same problem also appeared in a slightly different form in the Fibonacci Quarterly [7]. We can generalize to

$$
2^{m+2} \mid \varphi\left(\tau_{2} m_{n}\right), \quad n \geqslant 5,
$$

for the generalized Fibonacci numbers $\tau_{n}=f_{n}(a)$ by virtue of $\varphi(s)=2 k \geqslant 2$ for positive integers $s>2$, and $\tau_{2 t}=$ $\tau_{t} \mathfrak{f}_{t}$. Since $\left(\tau_{t}, \mathcal{L}_{t}\right)=1$ or 2 , then

$$
\varphi\left(\tau_{2 t}\right)=\varphi\left(\tau_{t}\right) \varphi(a)
$$

where $a=\mathcal{L}_{t}$ or $\mathcal{L}_{t} / 2$ so that $\varphi(a)=2 k \geqslant 2$. Thus,

$$
\tau_{2} m_{n}=\tau_{n} \delta_{n} £ 2 n £_{4 n}, \cdots,
$$

where

$$
\varphi\left(\tau_{n}\right) \varphi\left(\delta_{n} \mathcal{L}_{2 n} \AA_{4 n} \cdots\right)=4.2^{m} r
$$

for some integer $r \geqslant 1$.

REFERENCES

1. Marjorie Bicknell, "A Primer for the Fibonacci Numbers: Part VII, An Introduction to Fibonacci Polynomials and Their Divisibility Properties," The Fibonacci Quarterly, Vol. 8, No. 4 (Oct. 1970), pp. 407-420.
2. Marjorie Bicknell, "A Primer on the Pell Sequence and Related Sequences," The Fibonacci Quarterly, Vol. 13, No. 4 (Dec. 1975), pp. 345-349.
3. David E. Ferguson, "Letter to the Editor," The Fibonacci Quarterly, Vol. 8, No. 1 (Feb. 1970), p. 88.
4. Gerald E. Bergum, private communication.
5. D. A. Lind, "The Quadratic Field $Q(\sqrt{5})$ and a Certain Diophantine Equation," The Fibonacci Quarterly, Vol. 6, No. 3 (June, 1968), p. 91.
6. Peter L. Montgomery, solution to E 2581, Amer. Math. Monthly, Vol. 84, No. 6 (June-July, 1977), p. 488.
7. Problem H-54, proposed by Douglas A. Lind, Solution by John L. Brown, Jr., The Fibonacci Quarterly, Vol. 4, No. 4 (Dec. 1966), pp. 334-335.
8. Tables of Chebyshev Polynomials $S_{n}(x)$ and $C_{n}(x)$, U. S. Dept. of Commerce, Nat. Bureau of Standards, Applied Math. Series 9 . Introduction by Cornellius Lanczos, p.v.
9. V. E. Hoggatt, Jr., "Fibonacci Numbers and Generalized Binomial Coefficients," The Fibonacci Quarterly, Vol. 5, No. 4 (Nov. 1967), pp. 383-400.
10. Paul F. Byrd, "Expansion of Analytic Functions in Terms Involving Lucas Numbers of Similar Number Sequences," The Fibonacci Quarterly, Vol. 3, No. 2 (April, 1965), pp. 101-114.
11. R. G. Buschman, "Fibonacci Numbers, Chebyshev Polynomials, Generalizations, and Difference Equations," The Fibonacci Quarterly, Vol. 1, No. 4 (Dec. 1963), pp. 1-7.
