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There are many ways to generalize the Fibonacci sequence. Here, we examine some properties of integral sequences 
{un} satisfying 

(1) un+1un-t-u*= (-Vn, 
where necessarily UQ - 0 and ui = ±1 . The Fibonacci polynomials fn(x) given by 

(2) fn+1 (x) = xfn (x) + fn.i (x), f0 (x) = Q, ft (x) = 1, 

evaluated at x = b provide special sequences {un}. Of course, fn(1) = Fn, the Fibonacci numbers 0 , 1 , 1, 2, 3, 5, •••, 
and fn(2) = Pn, the Pell numbers 0 , 1 , 2, 5,12, 29, —.. Divisibility properties of the Fibonacci polynomials [1] and 
properties of the Pell numbers and the general sequences {fn(b)\ [2] have been examined in earlier Primer articles. 

In the course of events, we will completely solve the Diophantine equations/2 - (a2 ±4)x = ±4 and show that 
all of our generalized Fibonacci polynomials are special cases of Chebyshev polynomials ofthe first and second kinds. 

1. SOLUTIONS TO y2 -(a2+4)x2 = ±4 

Theorem 1. Let [un} be a sequence of integers such that un+iun„i - u = (-1)n for all integers n. Then 
there exists an integers such that 

(3) un+2 = aun+i + un . 
Proof. Set 

U2 = aui +buo, uj = aii2+bui 

for some real numbers a and/?. By Cramer's rule, 

b = | M i M 2 | ^ K «o| = UlU* ~ 'u* = 7 
| « 2 W 3 | ' \U2 UX J U\ ~ UQU2 

since U1113 -u=(-1) and U0U2 ~ u, = (-1)1 by definition of {un} .Thus, a is an integer. In Uct,U2=aui +UQ 
and U3 = au2 +ui yield 

U3 ~ "I "2 - uo 
a = 

Assume that un+i = aun + un_i. Then 

and 

aun+i + un - . ur 
Un 

But, un+2un - u2
+1 = (-1)n+l by definition of the • 

Un+2 = lu2
n+1 +(-1)n+l]/un, and un+2 = aun+1 +un 

for an integers by the Axiom of Mathematical Induction. 
Corollary 1.1. The sequence {un} has starting values u0 = Q, ul=+1. 
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Proof. By Theorem \,u2 = au1 +u0. Thus, 
u2 = a2ul +2autuo+u2

1
 = aui(aut + uo) + u2 = au1u2 + u2

Q. 

Since also UQ = U2- au^ , substituting above for u2, we have 

u2
2 = aui u2 + (u2

2 - 2aui "2 + a2u2
1), 0 = aut (aui - u2) 

Now, either a = 0, or u± =0, or u2=aui. If a = Q, u2 = uo, and from U2UQ -ut = -1,uo = 0and ui =±1 give the 
only possible solutions. If u± = 0, then u2 = uo leads to u2

2 =-1, clearly impossible for integers. If u2 = aui, then 
u2 = aui = aut + uo forces uo = 0, and again u\ = ±1. 

Theorem 2. Let \un) be a sequence of integers such that un+i un+i - u = (~1)n for all n. Then x = un and 
y = un+i + un„i are solutions for the Diophantine equation 
(4) y2 -(a2 +4)x2 = ±4, 
where also un+\ = aun + un_i. 

Proof. From Theorem \,un+i = aun +un„i. If y = un+i + un^i and x = un, then 
Un+1 = y ~ "n-i = y~ (fJn+l ~ aun) = y - un+1 - ax 

yielding 
"n+l = (y-ax)/2. 

Then 
un-l = Y - Un+l = y~ (y ~ ax)/2 = (y + ax)/2. 

By definition of the sequence {un} , 

"n+lUn-l ~Un = (~Vn , 

y+axy-ax _ 2 = y 
2 2 X t ' / 

(y2 -a2x2)-4x2 = ±4, 
y2 ~(a2 +4)x2 = ±4. 

Now, let the generalized Lucas and Fibonacci numbers in and fn be defined in terms of Fibonacci polynomials as 
in Eq. (2): 
(5) £n = fn+l(a) + fn-l(a) 

'%n = *n *a' • 

Since [2] 
(6) fn+iMfn-iM-ffc) = (~Vn, 
(7) i2-(a2+4)f2 = ±4 

by Theorem 2. Thus, the generalized Lucas and Fibonacci numbers give solutions to the Diophantine equation (4). 
Theorem 3. The generalized Lucas and Fibonacci numbers in and^w are the only solutions to the Diophan-

tine equation 
(4) y2-(a2+4)x2 = ±4. 

Proof. Now, y2 - (a2 + 4)x2 = +4 has solution x = 0, y = 2, as well as a solution x = 7, y = 3 if a = 7, but no 
solution for x = 7 when a > 7. The other equation y2 - (a2 + 4)x2 = -4 has solutionx = 1, y = a. The casea=1 
was solved by Ferguson [3] . We use a method of infinite descent which is an extension of the method of Ferguson 
[3] , and take a > 1,x> 1. Thus, y2-(a2 + 4)x2 = ±4 implies that 

ax < y < (a + 2)x 
since 
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y2 = (a2 +4)x2±4 = a2x2 +4x2±4 < a2x2 +4ax2 +4x2 

forces 
(ax)2 < y2 < (a+2)2x2. 

Since y and ax must have the same parity, let 

y = ax + 2t, 1 < t < x. 

Assume thatx is the smallest non-Fibonacci solution. Replace / with ax +2t in (4), yielding 

<ax+2t)2 -(a2+4)x2 ±4 = 0 

4x2 -4axt-4t2 +4 = 0 . 

Solve the quadratic for 2x, yielding 

2x = at± sj(a2 + 4)t2~±T~ 

But, 2x is an integer, and therefore 

(a2+4)t2 ±4 = s2 

for an integer s so that t = un and s = un+i + un_i are solutions by Theorem 2. Since x > 0, 

2x = at+s/(a2 +4)t2 ±4 

= at+s 

= aun+(un+l +Un-l) 

= (aun +un„i) + un_i 

= 2un+t 

$Q\\\dXx = un+i. But, if A- is the smallest non-Fibonacci solution, then x cannot be the next larger Fibonacci solution 
after t This is a contradiction, and there is no first non-Fibonacci solution. Thus, the Diophantine equation 

y2 -(a2 +4)x2 = ±4 

has solutions in integers if and only if 

y = ±ln
 = fn+l(a) + fn~l<3) and x = ±r,n = fn(a) • 

2. SPECIAL SEQUENCES {un } AND THE EQUATION y2 - (a2 - 4)x2 = ±4 

Now, all of these sequences {un} have starting values UQ = 0 and m = ±1. It is interesting to note some special 
cases. Notice that the sequence 

• • • ,1 ,0 ,1 ,0 ,1 ,0 ,1 ,0 ,1 ,1 ,2 ,3 ,5 , .. 

due to Bergum [4] satisfies uo = 0, u^ = 1, and 

"n+lUn-1 -U2 = (-IT, 

where the left-hand part of the sequence has 
un+2 = un = 0'Un+i +Un 

while the right-hand part has 
Un+2 = 1'Un+l + Un. 

It is interesting to note that special cases of the sequences {un} satisfying un+i un_i - u2' = (-1)n occur from [2] 

(8) T„_fc£„+fc-*f = (-i)n+k+1r2
k 

for the generalized Fibonacci numbers given in Eq. (5). Let 

**nk-k*nk+k-**k = (-Vnk+k+h2
k 

be rewritten 
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2 
T(n-i)k T(n+l)k Tnk = /jj(n+l)k+l 

k 

Now, since'Tnk/rk "s known to be an integer [1 ] , let £/„ = r^lr^, and the equation above becomes 

where (-i)(n+1)k+1 j s (-1)n if £ is odd but (-7) if /r is even. In particular, if k = 2, the sequence of Fibonacci num-
bers with even subscripts, { 0, 1, 3, 8, 21, •••} , gives a solution to un+iun„i - u2 = -1. Another solution \$un= n, 
since (n + Din - 1) - n2 = -1 for all n. 

Is there a sequence {un} of positive terms for which un+± un„± - u = +1? Considering Fibonacci numbers with 
odd subscripts, { 1 , 2, 5, 13, 34, •••} , we observe that un = F2n+i is a solution, and that un+i = 3un-un„u Using 
un+iun-i ~un

 = 1 and solving un+i = aun +bun_i as in Theorem 1 yields un+± = aun - u^-i. If we \ety = un+i -
un_i and x = un, proceeding as in Theorem 2, we are led to the Diophantine equation y - (a2 - 4)x = -4. We 
summarize as 

Theorem 4. If {un} is a sequence of integers such that 

for all n, then there exists an integer a such that 

un+2 = aun+i - un 

and y = un+i - un_i and x = un are solutions of the Diophantine equation 

(9) y2-(a2-4)x2 = -4. 

Theorem 5. The odd-subscripted Fibonacci and Lucas numbers give the only solutions to the Diophantine 
equation 

(9) y2 -(a2 -4)x2 = -4. 

Proof. We show that (9) has no integral solutions if \a\ £ 3, proceeding in the manner of the proof of Theorem 
3. Here, 

(a-2)x < y < ax. 

Since y and ax must have the same parity, let 

y = ax - 2t, 1 < t < x. 

Notice that, if x= 1, y2 - (a2 -4) = -4 becomes a 2 -y2 = 8, which is solved only bya=3,y= 1. 
Let;r be the first solution greater than one* Replace/ with ax - 2t in (9), yielding 

(ax~2t)2-(a2-4)x2+4 = 0 

4x2 -4axt + 4t2 +4 = 0. 

Solving the quadratic for 2x gives 

2x = at ± yj(a2 - 4)t2 - 4 , 

Since2x is integral, we must have (a2 -4)t2 -4 = s2 for some integers. By Theorem 4, t = un is a solution where 
t > 1. But, since A- is the first solution greater than 1, and* > t, we have a contradiction, and 

y2-(a2-4)x2 = -4 

is not solvable in positive integers unless a = 3. When a = 3f the equation becomes y - 5x2 = -4, which is solved 
only by 

V = L2n+1, * = F2n+1, 

odd-subscripted Lucas and Fibonacci numbers [5 ] . 
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Theorem 6. If {un} is a sequence of integers such that 
2 -

Un+lUn-1 ~Un = -1 
for all n, then there exists an integer a such that 

un+2 = aun+i - un and y = un+i - un„i and x = un 

are solutions of the Diophantine equation 
(10) y2 -(a2-4)x2 = +4. 

Proof. Proceed as in Theorem 4. 
Theorem 7. The Fibonacci and Lucas numbers with even subscripts give solutions to the Diophantine equation 

y2-(a2 -4)x2 = +4. 
Proof. Set a = 3 and refer to Lind [5]. 

3. GENERALIZED FIBONACCI POLYNOMIALS 
Next, in order to write solutions for the Diophantine equation (10), we consider a type of generalized Fibonacci 

polynomial. Let 
(11) h0(x) = 0, hi(x) = 7, and hn+2(x) = xhn+1(x)-hn(x) 
and 

g0M = 2, gt(x) = x, 
where 

ffn+2 M = xgn+i (x) +gn~i M -

We note that{/?nfo/} is a special sequence [un] since 

hn+i (a)hn-i (a) -h2(a) = -1. 
Then 

h (x} - i f f l * ) - aVx)
 x^2- h (2) = n hn<x) a1(x)-a2M' * ^ ' hnUi "' 

gn (x) = an
t (x) + an

2 (x) = hn+1 (x) - hn,t (x), 

where a± (x) and a2(x) are roots of 
X2 - \x + 1 = 0. 

(By way of comparison, the Fibonacci polynomials fn (x) have the analogous relationship to the roots of 
\2-\x-1 = 0. 

Also note that hn (3) = F2nJ 
It is easy to establish from ai (x)a2(xj = 1 that 

2an
t = gn (x) + [at (x) - a2 (x)Jhn (x) 

2a2 = gn (x) - [at (x) - a2 (x)]hn (x) 

with a^ (x) - a2(x) = V*2 - 4. From this it readily follows that 
/ = an

t(x)an
2(x) = [g2(x)-(x2-4)h2(x)]/4 

or 
g2(x)-(x2-4)h2(x) = +4. 

Now, we are interested in the sequences of integers formed by evaluating hn(x) an6gn(x) aXx = a. Thus 
(12) 
and we do have solutions to 
(12) g2(a)-(a2-4)h2(a) = +4. 

y2 -(a2 -4)x2 = +4. 
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Theorem 8. The generalized Fibonacci numbers {hn(a)} and generalized Lucas numbers {gn(a)} provide the 
only solutions to the Diophantine equation 

(10) y2 -(a2 -4)x2 = +4. 

Proof. Note that if x = 1, then y = a, and if x = 0, then y = 2, Now one can proceed as follows. We can write, as 
before, 

(a - 2)x < y < ax. 

Clearly, y and ax must have the same parity, so that we can let 

y = ax-2t, 1 < t < x, 

where x is the first positive integer which is greater than 1, not equal to hm(a), and a solution. Then, as before, re-
place y with ax - 2t in (10), yielding 

(ax-2t)2 - (a2 - 4)x2 -4 = 0 

4x2 - 4axt + 4t2 - 4 = 0. 

Solving the quadratic for-?*, 

(13) 2x = at ±sj(a2 - 4)t2 +4 . 

Since2x is an integer, there exists an integers such that 

(a2-4)t2 +4 = s2, 

with a solution given by 

t = hn(a) and s = gn(a) = hn+1(a) -hn_i(a) 

by Eq. (12). Then, (13) taken with the plus sign gives 

2x = ahn(a) +hn+i (a) - hn_i (a) = 2hn+i (a) 

andx = hn+i(a), a contradiction, sincex was defined as not having the form hm(a). 
Next, we consider the case of Eq. (13) taken with the minus sign. The casesa= / ora = 0are not very interesting. 

We need a lemma: 
Lemma. For a > 7, the sequence {hn(a)} is a strictly increasing sequence. 

Proof of the Lemma. 
h0(a) = 0, h1(a) = I h2(a) = a, hn+2(a) = ahn+1(a)-hn(a). 

Since 
hn+1(a) = ahn(a) -hn_j[(a) > (a - 1)hn(a) 

if 
hn_i(a) < hn(a), 

then 
hn+i(a) > hn(a). 

Thus, if we choose the minus sign in Eq„ (13), then we have 

2x = ahn (a) - (hn+i (a) - hn_t (a)) 

= ahn (a) - hn+i (a) + hn_i (a) = 2hn,1 (a) 

or x = hn_1(a) which contradicts the restriction that t <x. Thus, we must choose the plus sign in (13), which yield-
ed x = hn+i (a). So, even if x is the first integer greater than one for which we have a solution for 

y2-(a2-4)x2 = +4 
and where x $ hm(a), we find x = hn+i(a). This shows that there is no first positive integer which solves Eq. (10) 
which is not of the form x = hm(a). This concludes the proof of Theroem 8. 
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We note that the case a = 2 yields y = ±2mdx any integer. The recurrence 
un+2 " 2un+i — Un 

is satisfied by any arithmetic progression b, b+d,b + 2d, —, B + nd, — . However, the restriction 

Un+lUn-l-Un = ~1 

limits these to the integers/? = un . 
In summary, we have set down the complete solutions to the Diophantine equations 

y2 -(a2 ±4)x2 = ±4. 
y2 - (a2 +4)x2 has solution* = 0,y = 2, for alia. For 

y2 -(a2 +4)x2 = -4, 
we get x = 1, y = a. Both solutions are starting pairs for the recurrence 

Un+2 = aUn+1 + Un> 
and y = 2,af — leads to fn+i (a) + fn^ (a), and x = Of 1, — , leads to fn (a), where fn(x) are the Fibonacci polynom-
ials. Here, un+iun_i - u2 = (~1)n lead to j / 2 — (a2 + 4)x2 = ±4 v\aun+2 = aun+i +un. But either 

Un+lUn-l ~un = -1 o r ^n+l^n-1 ~ U2 = +1 
lead to the recurrenceun+2 = aun+i - un> and lead toy2 - (a2 -4)x2 = ±4. Now/ - (a2 -4)x2 = +4 allows x 
= 0,y=2andx = 7, y = a as starting solutions, where x = 0, 1, •••, leads to bn(a), and / = 2, a, •••, leads to bn+i (a) -
bn_i(a) for the generalized Fibonacci polynomials hn(x). F inal ly , / 2 - (a2 - 4)x2 =-4 has solution x= 1,y= 1 
when \a \ = 3, but no solution if \a \ ? 3. This then becomes / - 5x2 = -4 which is satisfied only by the oddly sub-
scripted Fibonacci and Lucas numbers, which satisfy the recurrence un+i = 3un - un„i, so that 

F2n+l = hn+i(3) - hn(3), 

and, of course, f2n+ i = hn+ld)- ' n a" cases, the only solutions arise from sequences of Fibonacci polynomials 
fn(x) evaluated dXx = a, or generalized Fibonacci p o l y n o m i a l s ^ ^ evaluated atx = a. We can then state 

Theorem 9. The Diophantine equations 
y2 -(a2 -4)x2 = ±4 

y2 -(a2 +4)x2 = ±4 

have solutions in positive integers if and only if 
y2-(a2-4)x2 = -4 

has a solution x = 1 or 
y2 -(a2 +4)x2 = -4 

has a solution x= 1. Every solution is given by terms of a sequence of Fibonacci polynomials evaluated at a, {fn(a)}, 
or generalized Fibonacci polynomials evaluated atx = a, {hn(a)}. 

4. CHEBYSHEV POLYNOMIALS 

There are Chebyshev polynomials of two kinds: 

Un+2M = 2xUn+i (x) - Un(x) 
Tn+2<x) = 2xTn+1(x)- Tn(x) 

with TQ(X) = 1 and T^ (x)=x, and UQ(X) = 1 and U\ (x) =2x. The Tn(x) are the Chebyshev polynomials of the first 
kind, and the Un(x) are the Chebyshev polynomials of the second kind [8 ] . There are also related polynomials 

Sn(x) = Un(x/2) and Cnfx) = 2Tn(x/2) 
which are tabulated in [8 ] . Our hn(x) mdgn(x) are related to Sn(x) and Cn(x) as follows: 
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hn(x) = Sn+i(x) and gn(x) = Cn(x). 

An early article by Paul F. Byrd [10] explains the close connection between Fibonacci and Lucas polynomials and 
theUn(x)and Tn(x). See also Hoggatt [9 ] , and Buschman [11]. 

5. ANOTHER CONSEQUENCE OF un+1un^ -u% = (-1)n 

Finally, we examine another consequence of 
Un+lUn-l-Un = ("^ 

We note that 
(un,un+1) = 1, (un,un„i) = 1. 

Note that 1 , - 1 , -un_i, un„i are incongruent modulo un,u>5, and form a multiplicative subgroup of the multi-
plicative group of integers modulo un. Since the order of the multiplicative group of integers mod un is $(un), where 
$(n) denotes the number of integers less than n and prime to n, and since the order of subgroup divides the order of 
a group, A\y(un). This method of proof was given by Montgomery [6] as solution to the problem of showing that 
ip(Fn) is divisible by 4 if n > 5. The same problem also appeared in a slightly different form in the Fibonacci Quar-
terly [7 ] . We can generalize to 

2m+2\^t2mn), n > 5, 
for the generalized Fibonacci numbers rn = fn(a) by virtue of $(s) =2k >2ior positive integerss >2, and r2t = 
Tttt. S\ncQ(rtfLt)= 1 or 2, then 

<p(T2t) = VfttHlo>), 
where a = itor ^t/2 so that y(a) = 2k >2. Thus, 

•2^n ~ *n$n^2n^4n> '" > 
where 

ip(Tn)ip(lnl2n£4n~-) = 4'2mr 
for some integer r> 7. 
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