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1. INTRODUCTION 

in a paper appearing in the Quarterly Journal of Mathematics [Vol. 20 (1969), pp. 129-137], Harold Davenport 
and Alan Baker dealt with the set of numbers: 1, 3, 8, 120. It has the property, noted by Fermat, that the product 
of any two increased by one is a square. We call such a set a />-set. Davenport and Baker proved, using the "effective" 
results of the latter, that if 1, 3,8, c is a /'-set, then c must be 120. 

Long before, Diophantus noticed that the se t * , * +2, 4x + 4, 9x + 6\s a/'-set for;e= 1/16. Indeed, the first three 
have the same property considered as polynomials i n * . In a previous paper [Quar. Jour. Math., Vol. 27 (1976), pp. 
349-353] the author proved that the only P-sets containing x and x + 2 in Z[x] are 

x, x+2, cr(x), cr+i(x), 

where r is a positive integer and the C{ are certain polynomials defined recursively. 
Here we consider a similar problem in a more general setting. Let a =a(x) and b = b(x) be two non-zero polynomials 

in Z[x] such that ab + 1 = w2, where w is in ZfxJ. [We omit the argument* when there is no ambiguity.] Without 
loss, we may assume that a, b, and w are in Z+ [x], that is, have positive leading coefficients. We want to allow a and 
b to be in Z; in this case Z+[x] becomes the set of positive integers. 

First we seek all solutions cj^ = Ck (x) in Z+fxJ of 

(1.1) ack + 1 = y?, bck + 1 = z2 y^ and z^ in Z+[x] . 

An equivalent pair of equations is 

(1.2) (b - a ) c k = z2
k-y

2
k, b-a = by2 -az2

k . 

In the previous paper we considered the case when b = a +2. Then there was just one sequence of c^. \\bta+2, 
there are at least two such sequences. We prove that if a, b, and c form a P-set and all are of the same positive degree, 
then there is no fourth of the-same degree which, with a, b, and c, forms a P-set. We prove that if a and b are both 
linear or quadratic there are exactly two sequences. If a and b are in Z and a < b < 4a we prove that there are exactly 
two sequences of cy, (unless b = a +2); we also show that if a <b <c <diorm a /'-set, then d > ab + 1. Our most 
significant result is that when a and b are linear over Z+[xJ, c = a + b + 2w, and a, b, c, d form a P-set of four ele-
ments, then there is exactly one possible d, namely 

c2 (a,b) = (4w2 - 2)c + 2(a + h), 

where ab + 1 = w2. The proof of this result is an adaptation of one of B. J. Birch given in the previous paper. We 
show that if a and b are two successive even-indexed Fibonacci numbers, C2(a,b) reduces to 4b(b2 + 1) and is not a 
Fibonacci number. A final section describes some results which seem true but for which we have no proofs. 

Since much of the theory is the same for integers and polynomials it is convenient to define an extension of the 
idea of inequality from integers to polynomials in ZfxJ. 

Definition. When we write "a is in Z[xj" we mean that it is either a polynomial of positive degree or an inte-
ger. In the latter case, we call it its own "leading coefficient." The symbol a > 0 means that the leading coefficient 
of a is positive. Similarly if a and b are in Z[x], a>b means that a - b > 0. The usual fundamental properties of in-
equality hold for this extension. 

We assume throughout that 

*The author promises there will not be a third; he has no intention of composing a sonata. 
156 
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(1.3) 0 < a < b. 

\\na = dega denotes the degree of a "mx, and similarly for/7^,, then (1.3) implies na </?£,. Note that A7a and/7^ must 
be of the same parity and 2n = na + n^, where n = nw. Define co to be 0 and have as a consequence that yo= ZQ = 1. 

2. FORMULAS FOR ck IN (1.1) AND (1.2) 
In order to find a formula forc^ we first seek a recursion formula for y^ andz^. To this end, write 

(2.1) (\/byk + V* zk = (w + sjab My/by^i + V* *fe-i), 
that is 

Yk = wYk-l + azk-i 
(2 2) 

Zk = byk-i+wz^i. 
To see that (2.2) defines a sequence of solutions of (1.1) suppose that y ^ , Z£_;? is a solution of the second equa-

tion of (1.2). In (2.1) rep lace^ by -sja and multiply corresponding sides of the two equations to get: 
byl-azl^w'-abXbyl^-azlJ. 

Another way to show this is to use Eqs. (2.2) directly in the second equation of (1.2). We show below that the first 
equation of (1.2) defines c^. 

Now wyk - azk = yk-i which implies 

Yk = wYk-l +wyk-l ~Yk-2 = 2wYk-l-Yk-2. 
Also wzk-byk=zk-i implies Zk = 2wzk-i -Zk-2- S o 

(2.3) Yk~2wYk-l +Vk-2 = 0 and zk~2wzk-i +zk-2 = 0. 
Note that y± =w+a andz^ = b * w with (1.2) imply thatc^ = 2w + a+b. By induction, deg / £ = kn. Hence, from 

(1.1) degcfe = 2kn - na, if k > 0,and deg z^ = (k + 1)n -na. 
Let a and a'1 be the zeroes of e2 - 2we + 7. Thus 

a = w + yjab and a'1 = w - yjab . 
Note that ab ? 0 implies that w £ 1. We seek y^, zk, and ct> in terms of a and a'1. Thus we want to determine r and 
s so that 

h -k 

a-a 
Now r-s = a-a'1 andra- sa'1 = (w+a)(a-a~1). This shows that 

r-w + a-cf1 and s = w+a-a. 

y^ = (w+ a)fk-fk_i and, similarly, zj^ = (w +b)f^-~ f^i, 

k -k 
f _ or - a * fk - — 

a-a 1 

Hence 

where 

Thus we have 
(zk - yk)(zk + yk) = (b - a)fk [(2w +a+ b)fk - 2fk^J . 

Recalling thatc^ = a + b+2w, we have, from (1.2), 
(2.4) ck = fk(cifk-2fk-i). 

It is interesting and useful to find a recursion formula for q , . To this end note that e - 2we + 1 = 0 implies 
e4 -(4w2 -2)e2 + 1 = 0. 

Thus 
(2.5) (a±2)k-(4w2-2)(a±2)k-1+(a±2)k~2 = Q, for k > 2. 
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Then f'k = a +a +N, where N is independent of k, and (2.5) implies 

(2.6) S f2k = (4w2-2)fl1-fl2+N', 

where /l/'is independent of k. Furthermore 

(fh + fk-l> ~ 2w(fk-l + fk-2) + (h-2 + fk-3> = 0 

implies that (f^ + fk-i)2 satisfies the same recursion formula as f2 except for a change in N'. Thus2f^fk-i and 
fkfk-i satisfy the same recursion formula except for the term independent of k. Thus 

cu = (4w2 - 2)ck-i - cu-2 + L , 
where L is in Z[x] and is independent of k. Taking k = 2,\NQ have 

C2 = (4w2 - 2)ci + L. 
On the other hand, (2.4), f2 = 2w, and f\ = 1 imply 

(2.7) c2 = 4w2a -4w. 

This shows that L = 2ci - 4w = 2(a + b). Hence we have 

(2.8) ck = (4w2 - 2)ck-i - ck-2 + 2(a + b). 

This is the recursion formula we sought. 

3. UNIQUENESS OF SOLUTIONS 

We could hope that the c% as developed above would be the only solutions of the Eqs. (1.1) and (1.2), but this is 
not so in general. However the c^ are the only solutions \\b - a = 2 and, with one exception, when a and b are both 
linear polynomials. To show this we develop a useful algorithm. 

Let a, b, c be three polynomials in Z+[x] such that a < b and 

(3.1) ab+ 1 = w2, ac+1 = y2, bc+1 = z2, with x,y,z in Z+[x]. 

Replacing y^, z^, yu~i, ?k-l «n (2-2) by / , z, y', z', respectively, we have the transformation: 

(3.2) / = wy' + az', z = by' + wz' 

and its inverse, 

(3.3) y' = wy-az, z' = -by + wz. 
This transformation is an automorph of by2 - az2, that is, by/2 - azf2 = by2 - az2. We now show that \i b <a + c 
and if c satisfies (3.1), then (3.3) yields ac' <c. This is the basis of our algorithm. 

First we show tha t / ' i s \nZ+[x] without further condition on a, br and c except those in (3.1). Also z' is in Z+[x] 
if and only if b < a + c. From the second equation of (1.2) with subscripts suppressed, we have 

a(b-a) = (w2 - 1)y2 -a2z2 , 
that is, 

a(b - a) +y2 = (wy - az)(wy + az). 

Since b > a, the left side is positive and since / and z are positive, wy +az is positive. Hence 

wy - az = y' > 0. 
Similarly, 

b(b-a) = b2y2 - (w2 - 1)z2 , 
which shows that 

(wz - byHwz + by) = z2 - b(b - a) = 1 +b(c + a-b) > 0 

if and only if b < a + c. Thus 
wz - by = z' > 0 if and only if b < a + c. 

Second, we show that y' and z' define a c' in Z[x] such that 
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(3.4) ac'+1 = y'2 and hc'+l = z'2. 

To this end we compute 

z'
2 __ y'

2 = [(w - tj)y + (w- a)z][(-w - b)y + (w + a)z] = (h - a)(by2 + az2) + z2 - y2 - 2w(b - a)yz 

= (b - ak'f where c' = by2 + az2 + c - 2wyz. 

Since b - a = by - az , we have from the equivalence of equations (1.1) and (1.2) that Eqs. (3.4) hold. 
Third, assume that b is of positive degree and b < a + c. Then w is of positive degree. As in the first part of our 

argument with y and y', z and z' interchanged, we have wy' - az' > 0. Hence (3.2) shows 

(3.5) ny* = ny-n. 

If c'= 0, then/? <a +c implies y'= z' = 1 and hence ny = n and nz=n\) from (3.2). If c't 0, then, from (3.4) 
na +nc = ^ny' = ?ny ~ ?n = na+nc-2n = 2nz - 2n . 

Hence the following holds 

(3.6) If c' / 0, then nc' = nc- 2n and n/ = nz- n. 

Finally, suppose/? is in Zand/ ; <a+ c. This implies that a and w are i n Z It also implies that c is in Z for if c were 
of positive degree with leading coefficient tf, then (3.1) would imply that ^ and bd would be squares; this is impos-
sible if ab + 1 is a square. So if b is in Z, ail the letters in (3.1) represent positive integers. As in the previous para-
graph, wy'- az'> 0 which implies 

(3.7) y' < y/w. 

From (3.4) we have, using (3.7), 

ac' = y'2 - 1 < y2/w2 - 1 = (ac + 1)/w2 - 1 < ac/w2-, 

since w> 1. Hence 

(3.8) 0 < c' < c/w2. 

We collect all these results in the following theorem. 
Theorem 1. Let a, b, cheaP-set over Z+[x] with a < b, let / and z in Z+fxJ be defined by (1.1) with sub-

scripts suppressed, and y'and z'defined by (3.3). Then c' = by2 +az2 - 2wyz +c defines ac'such thata, b, c ' isa 
P-set and (3.4) holds. Also y'> 0 without further condition, and z'> 0 if and only if b < a + c. if Z? is of positive de-
gree and b < a + c, then conditions (3.5) and (3.6) hold. If b is in Z and b < a + c, then (3.7) and (3.8) hold. [In-
equality (3.8) is sharpened in Lemma 4 of Section 6.] 

The results of Theorem 1 provide the mechanism to prove two useful theorems. 
Theorem 2. If a < b < c are polynomials of the same degree overZ+[x] which satisfy Eqs. (3.1) and, when 

a, b, c are in Z, the additional condition c <w2 = ab + 1 holds, then c = a+b+2w = ci (a,b). 

Proof. The conditions of the theorem imply that /?a = n = nc and b < a + c. If n > 0, nc = n and (3.6) imply 
c' = 0. If n = 0, (3.8) implies cr = £7. In both cases y'=z'= 1 and (3.2) shows that y = w + a, ac + 1 =y and hence 
c = a+b +2w. This completes the proof. 

Corollary 1. \fa,b,c,d are four distinct poiynomiais of equal positive degree QWXZ*[X] they do not form a /'-set. 
The corollary follows since if they form a /*-set we may take a < b < c < d and see from Theorem 2 that c = d, 

which is a contradiction. 
The corresponding result fora and b inZ is the following. 

Corollary 2. If a and b are in Z with a < b and \f a < b < c < d form a P-set, then d > ab + h [In view of 
Lemma 4 in Section G,d>ab + 1 could be replaced byd>4ab.] 

A closely allied result is the following. 

Theorem 3. \f4a>b>a,ab+1 = w2,mda<c<b, then a, b, c do not form a />-set in Z+fxJ. 
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Proof. Note that the conditions 4a > h > a and a < c < b imply that a, b, c are polynomials of the same de-
gree. If c> 4, b < 4a implies b < ac + 1 and hence from Theorem 2 with b and c interchanged, 

b = a+c+2w\ where w = 1 + ac. 
Then 
,-m .. ,_ . §h + 1 = a2+ac+2aw'+1 = (a + w')2 = w2 

Theorem 3 affirms that if a and b are "close enough together/Lwhether of positive degree or in Z, then no c can be 
inserted between a and b to form a /'-set of three elements. 

Now we assume that a and b are of the same positive degree and seek all c satisfying (3.1). [In Section 6 we con-
sider the same problem for a and b in Z.] We can get explicit results if nc = kn, where n = na= nc. Since each time 
we apply transformation (3.3), Theorem 1 shows that we decrease the degree of c by 2n, we eventually arrive at a 'c 
of degree n or in Z according as k is odd or even. Then if b < 'c, Theorem 2 shows that £= a (a,b) = a+ b +2w and 
hence c = nh(a,b) for some k. If, on the other hand,?<Z? we consider two cases separately. 

First if c < b and c is of positive degree n, Theorem 2 with b and ^interchanged shows that b =a +£+2y where 
y =ac+ 1. As in the proof of Theorem 3, this impliesc = a +b - 2w. This leads to a whole new sequence which we 
designate by dj. We can compute the members of this sequence by going back to Section 2 and starting with yg = 
1 = - I Q in place of YQ = 1 = ZQ. Then y^ and z£ will satisfy the same recursion formula but will be expressed differ-
ently in terms of the f^. Using an argument similar to that of Section 2 it can be found that 

(3.9) cu (a,b) = fkfcifk+2fk-lh w n e r e ^1 = a + h -2w. 

It can also be verified that the Cj satisfy the same recursion formula asq,, given in (2.8). 
Second,if ? < b and f is in Z, then ? < a < b and/? is even. If ?= 0, t h e n / = 1 =z , thec bef ore ? is Ci (a,b) and 

c = Ck(a,b) for some k. Then it remains to consider 0 <Z<a<b. Now, since a <b -^?we may use Theorem 1 wiUJi 
£ a, b in place of a, b, c. Since lea + 1 =ry2,l:b + 1 =12, m&ab+ 1 = w2 we define z'and w'by what corresponds 
to (3.3), namely 

z' = / F - 2W 
iv ' = az —'yw. 

By Theorem \,l:b' + 1 = z'2 defines/?'which, by (3.6), must be inZ. Now since 'cb'+ 1,l:a + 1,b'a + /are all squares 
with only a not in Z, the last paragraph in the proof of Theorem 1 implies that b'=Q. Hence a <b *c' impliesz' = 
w'= 1 antib =a+2y'+'c. But w = a+y. Wenze'c = a+h - 2w and c = Cj(a,b) for some/. We collect these results in 
the next theorem. 

Theorem 4. If a and /? are of the same positive degree, c satisfies (3.1), and the degree of c is a multiple of n, 
then c = ĉ fe,Z?>/ for some k or c = h(a,b) for some/. The second sequence is omitted if b = a +2. 

Corollary. If a and b are both linear or both quadratic in x and if c satisfies (3.1), then c = c^(afb) for some k 
or c = 'cj(afb) for some/. The second sequence is omitted if b = a +2. 

The corollary follows since if n = 2, the degree of c satisfying (3.1) must be even. When n > 2, we have in general 
more than two sequences. But by (3.3) we can for each c find a ?of degree not greater than n. From these ?, stem all 
the c satisfying (3.1). 

4. WHEN IS chcr + 1 A SQUARE? 
To answer this question we first find a formula for c^cr + 1 for k > r. Since we need a similar result for C{ we adopt 

a temporary notation which enables us to derive both results simultaneously. First, by use of fk+i =2wfk - fk-l> 
we can write (2.4) as 
(4.1) Ck = fk(cifk+2fk+ll where ct = a + b -2w. 

Similarly, (3.9) can be written 
(4.2) h = fk(cih-2fk+l)-
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To treat these together, we write 

(4.3) dk = fk(d1fk+2fk+1), 

whered^ = ck or q , according as ± is + or - and d1 = d±. 

Then 

(4.4) dkdr +1 = Cdi fkfr ± fk+l fr ± fr+l 4 ^ " (fr+l fk ~ fk+1 U)2 + ? • 
Now 

fr+l fr 
fk+1 fk 

\2wfr - fr_i fr 

\2wfk - fk_i fk 

fr fr-1 
fk fk-l 

fi h 
fk-r+1 fk-r = fk-

This shows that 

Thus 

(4.5) 

fr+lfk-fk+lU = fk-

dkdr+1 = (dlfkfr±2frfk+l±fk„r)
2-f2kr+1 . 

Now if k = r + 1, it follows that f^_r = 1 and we have 

(4.6) dr+1 dr + l = (dt fr+1 fr ±2frfr+2 ± V2. 

So we have the following theorem. 

Theorem 5. The polynomials cr+i cr+ 1 and "cr+{cr + 1 are squares in Z[x]. 

5. />-SETS WHEN a AND b ARE LINEAR 

From Theorem 5, ck cr + 1 is a square when k and r are successive integers. If a and b are linear we can show as in 
the previous paper that c^cr + 1 is a square in Z[x] only if k and r are consecutive integers. The idea of the argument 
is the same but the needed modifications cause a little trouble. We need the same result \wcy:r+ 1 but since the 
proof is almost the same, we omit it. We will need the following three lemmas which, as in the previous paper, we 
state without proof since the proofs are easy. 

Lemma 1. Let <pi (a), $2(al ar,d ^M be three polynomials in Z[a, a'1] such that the first t coefficients of 
ifi (a) and ^ 2 ^ a r e t n e same. Then the first t coefficients of <# (a)X(a) and ^ / W X r W are the same. 

Lemma 2. Let the first t coefficients of iptfa) and \pi(a) be the same fo r /= 1 and 2. Then the firsts coefficients 
of $i (a)$2(a) aRd ^1 (a)^2(a) a r e a ' s o t n e same. 

Lemma 3. Let <#(a), / ° 1, 2, be two polynomials in Z[a, a'1] whose leading coefficients are positive and such 
that the first t coefficients of their squares are the same. Then the first t coefficients of the two polynomials are the 
same. 

Now we prove the basic theorem. 

Theorem 6. If a and b are linear in Z+/x/,with ab + 1 = w and w in Z+[x], then a, b, cr, ck is a P-set if and 
only if r and k are consecutive integers. The same is true for a, b, Fr, £"& . 

Proof. The " i f " part is established by Theorem 5 and/or Eq. (4.6). To prove the "only if" part, first note that 
e=a+b-2w>$ is equivalent to (b - a)2 > 4 with equality if and only \\b= a+2. So the case e = 0 is covered by 
the previous paper. Or the reader may prefer to note the modifications needed in the following proof where we as-
sume that et0. 

Now fr can be thought of as a polynomial in Z[a, a'1] of degree r—1. It ha$2r - 1 terms with 1 and 0 alternating 
as coefficients. Thus if k > r, the sequence of 2r - 1 coefficients of fr is the same as the sequence of the first 2r - 1 
coefficients for fk. Henceforth in this proof we assume that k > r + 1, that ckcr + 1 is a square in ZfxJ and seek a 
contradiction. From what we have just noted, the first 2r + 1 coefficients of ef^ + 2f^+i and otefr+i +2fr+2 are 
the same, where the f-t are viewed as polynomials in Zl^oT1]. Note \\wXe = a+b - 2w, being different from zero, 
is not in Z, for suppose this is true and write 

a = a\x+ao, b = b^x+bo, and w = W^X + WQ. 
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Then if e is in Z, a^bi = Wi and ai + b± -2wi =0 imply ai =bi=wi. From this it follows that bo =ao+2 and 
hence e = 0, contrary to hypothesis. Furthermore e is not in Zfa, a"1 J since a depends only on the product aband 
not on the sum a + b. Let Z'=Z[e] and see that c^ and cr are InZ'faT*, a]. 

Using Lemma 2 and (4.1) with ci replaced by e, we then see that the first 2r + 1 coefficients of cy, and cr+i are 
the same. Then by Lemma 1, c^cr and cr+\ cr have the same first 2r+ 1 coefficients. Hence the same can be said for 

ffk,r = Ckcr+ 1 and gr+i,r = cr+icr+ 1. 
Supposegk>r ^V M, that is,#^r is a square in ZfxJ. We next show t h a t ^ r is also a square in Z'[a, a ], in fact 

ip(x) = e$i + }f2, where ^ and $2 are in Z[a, a'1 J and et'= e for some t' in Z. Note that w^O since a and b are 
linear. Since x = (w - WQ)/WI , 

ip(x) = w~1
to(w) = W^IWOQM + U] , 

where u is in Z, t > 0,and o(w) with OQ(W) areinZ/W/. Writer = eix + eo where, as we showed above, &i / 0. Note 
that 2w = a + a , and have 

y(x) = eoi (a)/ei wtf12s + o2(a)/e1 w\2s 

= eo3 (a)/vi + 04 (a)/v2, 
where s is a non-negative integer, v± and v2 are positive factors of eiw\2s, no factor of v^ greater than 1 divides all 
coefficients of eo^ (a) and no factor of v2 greater than 1 divides all coefficients of 04(a). Let vi = hv^, v2 = hv4, 
and (1/3, V4)= 1. Then 

9 9 9 9 9 9 _ "? 0 

(5.1) /? Vjv^gks = e v4o3 +2e\/^V40^04+ 1/^04 , 

This implies that 1/411/3 and 1/311/4 and hence 1/4 = 1/3= 7. Thus 
h gk,r = e2o2

3+2eo304 + 04 . 
Hence h2 = 1 and ipM = 0(73(0) * 04(0), which is the result we announced at the beginning of this paragraph. 

Now compare 
\/ffr+l,r = efr+lfr+2fr+2fr+1, 

from (4.6), and 
v^Tr = eo3 + 04 . 

The degree of \Jgr+i,r in a i s l a n d hence each of the first -?/- coefficients of \/gr+i>r is divisible by 2 ore (or both), 
and the first 2r + 7-st coefficient is the term free of a. Now fr+i fr is a sum of odd powers of a and hence there is no 
term free of a in fr+i fr. This, with (4.6) shows that the 2r + /-st coefficient of gr+i!r i s a n °dd integer. We showed 
above that the first 2r + 7 coefficients of g^r and gr+ij are the same. Hence, by Lemma 3, the 2r + /-st coefficient 
in \/gk,r is an odd integer. 

On the other hand, (4.3) with d[ = q, d± =ci = e implies 

*2M = gk,r = e2flf2 +2efkfr(frfk+l +fkfr+l)+4fkfrfk+lfr+l + 1-
The degree of g^r in a is 2r+2k - 2. Thus each of the first 2r + 2k-2 coefficients is divisible by e or 2. But 

r + k-1 > r + r + 2-1 = 2r+1. 
This is the contradiction that proves the theorem for q , and cr. The proof for c^ and cr is almost the same. 

Now we prove our principal theorem for a and b linear. 

Theorem 7. Let a and b be linear in Z+fxJ and ab + 1 = w , w in Z+fxJ. If 

(5.2) a/b/a+b+2w/c 

is a P-set of four elements, then 

(5.3) c = c2 (a,b) = ~c2(b,a+b+ 2w). 

Proof. Since a, b, c is a P-set, the corollary of Theorem 4 shows that c = c^(afb) for some k or c = Cj(a,b) for 
some/ Now a +b +2w = ci(a,b) and if c = cy>(a,b), Theorem 6 implies 
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(5.4) c = C2(a,b) or c = Cj(a,b) for some/. 

Now use the same argument with a replaced by b and h by a + h + 2w. The corollary of Theorem 4 shows that 
c = c%(h, a + b + 2w) for some k or c = h (b, a + b + 2w) for some /' But 

(5.5) a = c1(b/a+h+2w) 

and Theorem 6 shows that 

(5.6) c = c2(b,a+b+2w) or c = c^(bfa+b +2w) 

for some/:. 
NextweprovethatC2^/3-^i& + 2w) = c2(a,b). Mo\Nb(a +b +2w) + 1 = (b +w)2. So, using the recursion formula 

(2.8) fore in place of c, we have 

c2(h,a+b+2w) = [4(h+w)2 -2]a+2(a+2b+2w) 

= [4(ab+b2+ 2bw+1)-2]a+2(a+b+2w)+2b 

= (4ab +2)(a +b +2w) +2a+2b 

= (4w2 - 2)ci (a,b) +2a+2b = c2(a,b). 
Then if c j= c2(a,b) we know from (5.3), (5.4), and (5.6) that Cj(a,h) = c^(b, a+b +2w) for some/ and k greater 

than 2. But since c^ is of degree 2k - 1 and cy of degree 2j - 7, the equality implies/= k. We now reach a contradic-
tion by showing that 

(5.7) ck(b,a+b+2w) > l},(ajb), if k > 2. 
We showed above that b(a + b + 2w) + 1 = (h+w)2, that \%,b +w is the " w " for the pair b, a+b + 2w. Correspond-
ing to a for this pair is 

0 = b+w + *J(h +w)2 - 1 > a = w + V ^ 2 - 1. 

Lethk = (@k - p~k)/(p- p-1) to see that hk corresponds to fy. Thus, from (4.1) and (5.5) 

ck(b,a+b+2w) = hk(ahh+2hk+1). 
Using (3.9), the inequality (5.7) may be written 

(5.8) ahl+2hkhk+1 > (a+b - 2w)f^+2fkfk^ . 

To show that (5.8) holds, it is sufficient to show that ah^ > (a+b - 2w)f£ for k>2.Jo this end we first show 
that hk/fk increases with k. To do this use the recursion formulas for /?^ and 4 to get 

Hfk-l ~ fkhk-t > (2whk_t -hk„2)fk_i(2wfk~i ~ fk-2frh~l 

= hk-ifk-2-fk-lhk~2 > 1*2*1 -bif2 = h2-f2 > 0. 
Hence b^/fk increases with k and (5.8) holds if 

ah2 > (a + h-2w)f2, that is, a(b + w)2 > (a + b-2w)w2 . 

The last inequality is easy to verify. Hence the inequality (5.7) follows and the theorem is proved. The following cor-
ollary follows immediately from Theorem 2. 

Corollary. Let a, h,dbea P-set of three linear elements of Z+fx] with a <b <d. Then the only P-set contain-
ing a, b, and d is 

a,b,d,c2(a,h). 
REMARK. Notice that the part of the above where we showed c2(a,b) = ~c2(b, a + b +2w) did not depend on a 

and b being linear. In the course of proving this result we only assumed ah + 1 = w2 and (2.8) for cy, and dj. 

6. P-SETSOVERZ 

Sn this section we assume that a and b are positive integers, a <b, andab + 1 = w2, where w is a positive integer. 
Also, as in Theorem 3, we assume that a and b are "not too far apart," specifically, that b < 4a. We find all integers 
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c such that a, b, c is a P-set. Toward this end we first need to sharpen inequality (3.8) of Theorem 1. 

Lemma 4. Let a, b, c satisfy Eqs. (3.1) and let (3.3) define/', and ac'+ 1 = y'2 define c'. Then, if b <<? +c, it 
follows that 
(6.1) c' < c/4ab. 

Proof. As in the proof of Theorem 1, the condition/? <a+c implies that / 'and z' are positive. Since bc'+ 1 = 
z'2 we have 

ac + 1 = y2 = (wy'+az')2 = w2ac' + ab + 1+a2(1+bc')+2way'z'. 

Hence 
c = (w2+ab)c' + h+a+2wy'z' > 2abc''+a + b + 2sjabsjabc', 

since w = sfab + 1. Thus c > 4abc' and the proof is complete. 
The first part of the proof of the next theorem is like that of Theorem 4. After this, further details must be dealt 

with. 

Theorem 8. If a < b <4a, a and b are in Z+. and Eqs. (3.1) hold, then c = cy,(a,b) for some k or c = Cj(a,b) 
for some/ The set Cj is omitted \\b = a+2. 

Proof. \ic> w2, then c > b - a and, by Theorem 1, a sequence of transformations (3.3) yields a c' < w2. [We 
assume that the c before c' in the sequence is not less than w2. if c <w2 the argument is what follows.] If c' > b, 
Theorem 2 shows that c' = a + b + 2w = c^ (a,b) and hence c = Ck(a,h) for some k. If, on the other hand, c' < 
b, Theorem 3 shows that c' < a < b. Then if b < ac' + 1, Theorem 2 implies/; = a+c' + 2w', where w'2 = ac'+ 1. 
Then, as in the proof of Theorem 3,c' = a + b -2w and hence c = lj(afb) for some j, where this sequence is omitted 
\ic'=0,that\s,\ib = a + 2. 

It remains to consider 0 <c'<a <b and b >ac'+I Then 4a > £ implies c'< 3. Write ac'+ 1 = y<2 and be'+ 1 = 
z'2. Now we use (3.3) once for c'f a, b in place of a, b, c. By Lemma 4 the transformation takes Z? into /?' satisfying 
the inequality 

b' < b/4ac' < 1/c', 

since a < 1 + b. Hence b'= 0 and, as in Theorem 2, this implies 

(6.2) b = a + c' + 2y' = ale', a). 

First if c'= 2 or 3,b >ac'+ 1 implies^ +c' + 2y'>ac'+ 1. Then 

2y' > da-d, where d = c'- 1. 
Then 

4(ac'+1) > d2a2 -2d2a+d2, 
(6.3) 0 > d2a2 -2a(d2 +2d+2)+d2 -4. 

\\d = 2, (6.3) becomes 0 >4a2 -20a, that is,a <5/2 which is impossible. Ud= 1, (6.3) becomes0> a2 - 10a-
3 which holds if and only if a < 10. Then, under the conditions imposed, the only possibility \%a = 4,b = 12, w = 7. 
Thena +b - 2w = 2 = c'= ci(a,b) and c = ij(ajj) for some/. 

Second, if c'= 1, (6.2) becomes b = a + 1 + 2y'and 1 +ab = w2 implies w = y' + a. Hence a + b - 2w = c' = ci (a,b). 
Then, as in the case when d = 1, c = Cj(a,b) for some/ This completes the proof. 

Theorem 8 implies the following theorem with only two little details to be filled in. 

Theorem 9. \\a,b,e = a + b + 2w, d \s a P-set of four distinct elements of Z+subject to the conditions a <b 
< 4a and ab + 1 = w2, then d must be in each of the two following sets: 

^1 = [ck(a,h) u Cj(a,b)} 

$2 = {ck(bfe) u Cj(b,e)} . 

One possibility \sd = C2(aJb) = C2(b,e). \tb = a+2, thenj^ = \Ck(a,b)}. 

Proof To apply Theorem 8 to this theorem we must notice that e < 4b is equivalent to 4 < (9b - a)(b - a) which 
holds since b>a>0. For the rest, one notes the Remark after the Corollary of Theroem 7. 
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7. P-SETS OF FIBONACCI NUMBERS 
Let F{ denote the / Fibonacci number. The following well known facts can easily be verified for 5 = F2r_2 » 

b = F2r, r > 1: 

i) w2 = ab + 1 = (b- a)2, that is, a2 - Sab + b2 = 1. 

ii) If e = F2r+2 .then e = ci (a,b) = 3b - a,ae + 1 = (a + w)2 = b2,be + 1 = (b +w)2 = (2b - a)2, where 

w = b-a = F2r_1. 

These two properties show that a, b, a form a /'-set. From i), 

(7.1) b = at, where 2t = 3 + *j5 + 4/a2. 

This shows that b <3a with equality only if a = 1. Hence the hypotheses of Theorem 8 hold and all the numbers d 
such that a, b, e, d form a P-set can be expressed asck(a,b) NCj(a,b). V. E. Hoggatt, Jr., and C. E. Bergum showed 
[1] that 

(7.2) F2r-2, F2r, F2r+2, c = 4F2r„1 F2rF2r+1 

is a P-set. It is not hard to show that c in (7.2) is, in our notation, c2(a,b) for a = F2r_2 and b = F2r. To this end, 
notice that, since F2r_1 F2r+1 = f f r + I, c in (7.2) can also be written 

(7.3) c = 4b(b2 + 1), where b = F2r. 

This can be shown to bec2(a,b) by using (2.8) with w = b -a, k = 2. 
Our Theorem 3 shows that there is no c between F2r_2 and F2r such that c, F2r-2, F2r is a /'-set. Theorem 2 shows 

that if these same three numbers form a P-set with F2r < c < F\r_t, then c = F2r+2. The following Theorem shows 
that c is not a Fibonacci number. 

Theorem 10. If a = F2r_2, b = F2r, and r > 1,then 

(7.4) F6r,t < c2(a,b) < F6r. 

Proof. From (13),c2(a,b) = 4F3
2f + 4F2r. Now 

Fk = £_z_ |~ , where 0 = (7 + y/5}/2, 0 = (1 - y/5)/2. 

Hence 

(7-5) F{ - ^I'lf = '1/5)IF3k ~ 3(- DkFk] . 

Thus the two inequalities in (7.4) will follow if we can show 

(7.6) F6r/F2r > 8, 

(7.7) F6r/F6r.t > 5/4. 

To show (7.6) use (7.5) to get F$r/F2r
 = 5F2

r+3, which shows that F^r/F2r is an increasing function of r. Then 
(7.6) follows from 

F6r/F2r > F12/F4 = 48 > 8. 

Also (7.7) holds since F2r/F2r_i is an increasing function of r and 

F6r/F6r-1 > F12/Fn = 144/89 > 5/4. 

Thus the proof is complete. 

8. UNFINISHED BUSINESS 

For b of degree greater than 2, there does not seem to be much of interest since in most cases there will be more 
than two sequences of numbers which with a and b form a P-set. For a and b linear it would be interesting to show 
that 
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(8.1) a,b,cr(a,h),cs(a,b) 

is not aAset for any r and s. The difficulty in proving this is that, if one is to use the method of Birch, one first needs 
a pair r,s for which crcs + 1 is a square. One might at least prove that there isat most one pair r and s such that (8.1) 
is a P-set. 

For a and b quadratic functions of x, the basic difficulty is that gy,>r could be a square in Z[x] without being a 
square over Z[a,b]. Even if that were surmounted, adapting Theorem 6 to quadratics would present some difficulties., 

For a and b integers, this paper does not add much to present knowledge except to place the problem in a larger 
setting. The Davenport-Baker result shows that in Theroem 9 when a = 1, h = 3, the intersection of ^ and J2 is 
£2(1,3) = 120. A really significant result would be a proof that this is true for a and b any two successive Fibonacci 
numbers of even index. To show this independently from their result would present all the difficulties they encoun-
tered for their special case. At one time I hoped that one might by using the sequence of transformations (3.3) and a 
proof of "infinite descent" reduce the general result to that of the pair a = 1,b = 3, but it does not seem to work. 

A somewhat weaker result would be the conjecture that if a, b, c are three successive even-indexed Fibonacci num-
bers and if a, b, c, d is a F-set of four numbers, then d cannot be a Fibonacci number. From Theorem 10, C2(a,b) is 
not a Fibonacci number. Unfortunately, for c^(a,b) with k > 2 there does not seem to be such a definite inequality 
as (7.4). One possible approach could be to consider the set of Fibonacci numbers as dividing the line of positive 
reals into intervals. Perhaps one could, using Theorem 9, assume, for example, that cr(a,b) and cs(b,e) were in the 
same interval and thus get a relationship between r and s which might be fruitful. But this seems like a long hard row 
to hoe. Also it would be interesting to show that a, h, c as defined above are not in aP-set of five elements. All of 
these results seem very plausible. 
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B. We can easily obtain 

(2P)p = 2(2p- D(2pZi) and from Part A, (2p) = 2 (mod/?3). 

Thus2p ^2(2p - 1) (2pZf) <m o d P3)' S i n c e & P3^= (2P ~ IP3) = 12, and 2p - 1 we have the multiplicative 
inverses (mod/73) and we get/?/#/? - V = (2p~2) (mod/?5). Now(2p - 1H=-1 -2p-4p2 (mod/?3). Hence 

p/(2p-1) - p(-i-2p-4p2) (mod/?5) = -p-2p2 (mod/?5). 
The result then follows. 

AN ADJUSTED PASCAL 
H-213 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

A. Let An be the left adjusted Pascal triangle, with n rows and columns and 0's above the main daigonal. Thus 

/ 1 0 ••• 0 \ 
1 1 0 - 0 \ 

An " V 1 2 1 0 • 0 / 
\ J / nXtt 

Find An'A
 Twhere A T represents the transpose of matrix, An . 

B. Let 

( 1 0 0 
0 1 0 
0 1 1 0 
0 0 2 10 

nXn 


