PELLIAN DIOPHANTINE SEQUENCES

A. G. SHANNON

The New South Wales Institute of Technology, Broadway, Australia

1. INTRODUCTION

The so-called Pellian Diophantine equation is

$$
x_{22}^{2}-2 x_{12}^{2}=1
$$

$$
\left|x_{22}^{2}-m x_{12}\right|=1
$$

or

$$
\text { abs. }\left|\begin{array}{rr}
x_{22} & m x_{12} \\
x_{12} & x_{22}
\end{array}\right|=1
$$

A generalization of this is in turn provided by
(1.1)

$$
\text { abs. }\left|\begin{array}{ccccc}
x_{r r} & m x_{1 r} & m x_{2 r} & \cdots & m x_{r, r-1} \\
x_{r-1, r} & x_{r r} & m x_{1 r} & \cdots & m x_{r, r-2} \\
& & \cdots & & \\
x_{1 r} & x_{2 r} & x_{3 r} & \cdots & x_{r r}
\end{array}\right|=1
$$

The aim of this paper is to construct a solution for this generalized Pellian Diophantine equation. The approach adopted is less general than that of Bernstein [1] but is, in a sense, more direct. For encouragement with an earlier draft of this paper thanks are due to Bernstein, whose works on pyramidal Diophantine equations [3] and the JacobiPerron algorithm [2] should be seen for further extensions. We designate the determinant in Eq. (1.1) by

$$
D\left(m ; x_{1 r}, \cdots, x_{r r}\right)
$$

2. SEQUENCES

We define sequences $\left\{W_{s, n}^{(r)}\right\}$ which satisfy the arbitrary order linear homogeneous recurrence relation

$$
\begin{equation*}
W_{s, n}^{(r)}=\sum_{j=1}^{r}\binom{r}{j} D^{r-j} W_{s, n-j}^{(r)}, \quad n>r \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& D=[w], \quad w \text { an } r^{t h} \text {-degree irrational: } \\
& \begin{aligned}
w^{r} & =m \\
& =D^{r}+d, \quad m, D, d \in Z_{+}
\end{aligned}
\end{aligned}
$$

with boundary conditions determined by

$$
\begin{gather*}
W_{s, n}^{(r)}=\delta_{s, n+1} \quad\left\{\begin{array}{l}
s \leqslant n+1 \\
1 \leqslant n<r
\end{array}\right. \\
W_{s, r}^{(r)}=D^{s-1} \\
W_{s, r}^{(r)}=D W_{s-1, n}^{(r)}+W_{s-1, n-1}^{(r)} . \tag{2.2}
\end{gather*}
$$

The initial values $W_{s, 1}^{(r)}, s>2$, have not been specified because they are not used in this development. They are readily determined from Eqs. (2.1) and (2.2) if required.
[APR.

The table provides some examples of $W_{s, n}^{(2)}$ and $W_{s, n}^{(3)}$.
Each of the sequences can be expressed in terms of the fundamental sequence [6], $\left\{w_{1, n}^{(r)}\right\}$:

$$
W_{s, n}^{(r)}=\sum_{j=0}^{s-1}\binom{s-1}{j} D^{s-j-1} W_{1, n-j}^{(r)}
$$

Proof. When $s=1,2$, we have respectively

$$
W_{1, n}^{(r)}=W_{1, n}^{(r)} \quad \text { and } \quad W_{2, n}^{(r)}=D W_{1, n}^{(r)}+W_{1, n-1}^{(r)}
$$

Suppose the result is true for $s=1,2, \cdots, t$.

$$
\begin{aligned}
W_{t+1, n}^{(r)}=D W_{t, n}^{(r)}+W_{t, n-1}^{(r)} & =\sum_{j=0}^{t-1}\binom{t-1}{j}\left\{D^{t-j} W_{1, n-j}^{(r)}+D^{t-j-1} W_{1, n-j-1}^{(r)}\right\} \\
& =\sum_{j=0}^{t}\left\{\binom{t-1}{j}+\binom{t-1}{j-1}\right\} D^{t-j} W_{1, n-j}^{(r)}=\sum_{j=0}^{t}\binom{t}{j} D^{t-j} W_{1, n-j}^{(r)},
\end{aligned}
$$

as required
We define matrices M, N_{n} :
3. LEMMAS

$$
\begin{gathered}
M=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & & 1 & \cdots \\
0 & 0 \\
0 & 0 & \cdots & 0 & \cdots \\
1 & r D & \binom{r}{2} D^{2} & \cdots & r D^{r-1}
\end{array}\right], \\
N_{n}=\left[W_{\kappa, n+\rho}^{(r)}\right]
\end{gathered} \quad 1 \leqslant \kappa, \quad \rho \leqslant r .
$$

Lemma 1.

$$
N_{n+1}=M^{n} N_{1} .
$$

Proof. The result clearly follows from induction on n, since when $n=1$,

$$
\begin{aligned}
M N_{1} & =\left[\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \\
& \cdots & & \\
0 & 0 & \cdots & 1 \\
1 & r D & \cdots & r D^{r-1}
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
0 & & \cdots & \\
0 & W_{2, r+1}^{(r)} & \cdots & W_{r, r+1}^{(r)}
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
0 & & 0 & \cdots & W_{r, 3}^{(r)} \\
1 & \cdots & \cdots & W_{r}^{(r)} \\
1 & W_{2, r+1}^{(r)} & \cdots & W_{r}^{(r+1} \\
W_{1, r+2}^{(r)} & W_{2, r+2}^{(r)} & \cdots & W_{r, r+2}^{(r)}
\end{array}\right]=N_{2} \\
N_{3} & =M N_{2} \\
& =M^{2} N_{1}, \text { and so on. }
\end{aligned}
$$

Lemma 2.

$$
\operatorname{det} N_{n}=(-1)^{n(r-1)}
$$

Proof.

$$
\operatorname{det} M=(-1)^{r-1}=\operatorname{det} N_{1}
$$

$$
\operatorname{det} N_{n}=(-1)^{(r-1)(n-1)}(-1)^{r-1}=(-1)^{n(r-1)}
$$

Lemma 3. $\quad \sum_{k=1}^{r} \sum_{j=0}^{r-k}\binom{r-k}{j} W^{k} D^{j} W_{i, n+j+k}^{(r)}=\sum_{k=1}^{r} \sum_{j=0}^{r-k}\binom{r-k}{j} W^{k-1} D^{j} W_{i+1, n+j+k}^{(r)}$.

Proof. We consider coefficients of w :

$$
\begin{aligned}
\sum_{j=0}^{r-k-1}\binom{r-k-1}{j} D^{j} W_{i+1, n+j+k+1}^{(r)} & =\sum_{j=0}^{r-k-1}\binom{r-k-1}{j} D^{j}\left(D W_{i, n+j+k+1}^{(r)}+W_{i, n+j+k}^{(r)}\right) \\
& =\sum_{j=0}^{r-k-1}\left\{\binom{r-k-1}{j} D^{j+1} W_{i, n+j+k+1}^{(r)}+\binom{r-k-1}{j} D^{j} W_{i, n+j+k}^{(r)}\right\} \\
& =\sum_{j=0}^{r-k}\left\{\binom{r-k-1}{j-1}+\binom{r-k-1}{j}\right\} D^{j} W_{i, n+j+k}^{(r)} \\
& =\sum_{j=0}^{r-k}\binom{r-k}{j} D^{j} W_{i, n+j+k}^{(r)}, \text { as required. }
\end{aligned}
$$

4. RESULT

Theorem. For $i, k=1,2, \cdots, r$,

$$
x_{i k}=\sum_{j=0}^{r-k}\binom{r-k}{j} D^{j} W_{i, n+j+k}^{(r)}
$$

are solutions of the Pellian Diophantine equation

$$
1=D\left(m ; x_{1 r}, \cdots, x_{r r}\right)
$$

Proof. Lemma 3 becomes

$$
\begin{equation*}
\sum_{k=1}^{r} w^{k} x_{i k}=\sum_{k=1}^{r} w^{k-1} x_{i+1, k} \tag{4.1}
\end{equation*}
$$

$(-1)^{n(r-1)}=\operatorname{det} N^{n}=\left|\begin{array}{cccc}W_{1, n+1}^{(r)} & W_{2, n+1}^{(r)} & \cdots & W_{r, n+1}^{(r)} \\ W_{1, n+2}^{(r)} & W_{2, n+2}^{(r)} & \cdots & W_{r, n+2}^{(r)} \\ & \cdots & & W_{r, n}^{(r)} \\ W_{1, n+r}^{(r)} & W_{2, n+r}^{(r)} & \cdots & W_{r, n+r}\end{array}\right|$
$=\left|\begin{array}{lll}W_{1, n+1}^{(r)}+\sum_{j=1}^{r-1}\binom{r-1}{j} D^{j} W_{1, n+j+1}^{(r)} & \cdots & W_{r, n+1}^{(r)}+\sum_{j=1}^{r}\binom{r-1}{j} D^{j} W_{r, n+j+1}^{(r)} \\ W_{1, n+2}^{(r)}+\sum_{j=1}^{r-2}\binom{r-2}{j} D^{j} W_{1, n+j+2}^{(r)} & \cdots & W_{r, n+2}^{(r)}+\sum_{j=1}^{r}\binom{r-2}{j} D^{j} W_{r, n+k+2}^{(r)} \\ & \cdots & \\ W_{1, n+r-1}^{(r)}+D W_{1, n+r}^{(r)} & \cdots & W_{r, n+r-1}^{(r)}+D W_{r, n+r}^{(r)} \\ W_{1, n+r}^{(r)} & \ldots & W_{r, n+r}^{(r)}\end{array}\right|$

$$
=\left|\begin{array}{llll}
x_{11} & x_{21} & \cdots & x_{r 1} \\
x_{12} & x_{22} & \cdots & x_{r 2} \\
x_{1 r} & x_{2 r} & \cdots & x_{r r}
\end{array}\right|=D\left(m ; x_{1 r}, \cdots, x_{r r}\right)
$$

by equating coefficients of w^{k} in Eq. (4.1).

5. CONCLUSION

Consider, as examples: When $r=2, m=2$, we have
When $n=1$,

$$
D=[\sqrt{2}]=1, \quad \text { and } \quad x_{22}=W_{2, n+2}^{(2)}, \quad x_{12}=W_{1, n+2}^{(2)}
$$

which satisfy
when $n=0$,
which satisfy

$$
x_{22}=w_{2,3}^{(2)}=3, \quad x_{12}=w_{1,3}^{(2)}=2
$$

$$
x_{22}^{2}-m x_{12}^{2}=1
$$

$$
x_{22}=w_{2,2}^{(2)}=1, \quad x_{12}=w_{1,2}^{(2)}=1
$$

$$
x_{22}^{2}-m x_{12}^{2}=-1
$$

The relevant recurrence relation is

$$
W_{s, n}^{(2)}=2 D W_{s, n-1}^{(2)}+W_{s, n-2}^{(2)}
$$

When $r=3, m=9$, we have

$$
D=[\sqrt[3]{9}]=2, \quad \text { and } \quad x_{33}=W_{3, n+3}^{(3)}, \quad x_{23}=w_{2, n+3}^{(3)}, \quad x_{13}=W_{1, n+3}^{(3)}
$$

When $n=0$,
which satisfy

$$
x_{33}=W_{3,3}^{(3)}=4, \quad x_{23}=w_{2,3}^{(3)}=2, \quad x_{13}=W_{1,3}^{(3)}=1
$$

$$
x_{33}^{3}+m x_{23}^{3}+m^{2} x_{13}^{3}-3 m x_{13} x_{23} x_{33}=1
$$

The relevant recurrence relation is

$$
W_{s, n}^{(3)}=3 D^{2} W_{s, n-1}^{(3)}+3 D W_{s, n-2}^{(3)}+W_{s, n-3}^{(3)}, \quad n>3
$$

There is scope for further research in generalizing the properties of the second-order Pellian sequence discussed by Horadam [5]. The use of the Jacobi-Perron Algorithm in this context should be studied first [2]. The other way of generalizing the Pellian equation, namely,

$$
x^{r}-m y^{r}=1,
$$

is still an open and challenging question as Bernstein [4] remarked.

REFERENCES

1. Leon Bernstein, "The Generalized Pellian Equation," Trans. Amer. Math. Soc., (1) Vol. 127 (1967), 76-89.
2. Leon Bernstein, The Jacobi-Perron Algorithm: Its Theory and Application. Lecture Notes in Mathematics, 207, Springer-Verlag, Berlin - Heidelberg - New York, 1971, Ch. 6.
3. Leon Bernstein, "Explicit Solutions of Pyramidal Diophantine Equations," Canad. Math. Bull. Vol. 15 (1972), 177-184.
4. Leon Bernstein, "Fundamental Units from the Preperiod of a Generalized Jacobi-Perron Algorithm,".J. reine angew. Math. Band 268/269 (1974), 391-409.
5. A. F. Horadam, "Pell Identities," The Fibonacci Quarterly, Vol. 9 (1971), 245-252, 263.
6. A. G. Shannon, "Some Properties of a Fundamental Recursive Sequence of Arbitrary Order," The Fibonacci Quarterly, Vol. 12 (1974), 327.
