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1. INTRODUCTION

The so-called Pellian Diophantine equation is
ij —-foz =1
which can be generalized to 5
lXZZ—mX12| =1,
or

X22 MX{12
X12 X22

abs.

A generalization of this is in turn provided by

Xrr mXgy MX2y - MXpp_ g
Xy X mx o MXy g

(1.1) abs. r-1,r " 1r rr-2| = 1.
X1r X2r X3r Xer

The aim of this paper is to construct a solution for this generalized Pellian Diophantine equation. The approach
adopted is less general than that of Bernstein [1] but is, in a sense, more direct. For encouragement with an earlier
draft of this paper thanks are due to Bernstein, whose works on pyramidal Diophantine equations [3] and the Jacabi-
Perron algorithm [2] should be seen for further extensions. We designate the determinant in Eq. (1.1) by

D(m;’xjr, ttty, er} .
2. SEQUENCES
We define sequences {Ws(rr); }which satisfy the arbitrary order linear homogeneous recurrence relation

r
(r) - i\ pr-iyy(r)
(2.1) W) = Zi (].)D we o o>
i=
where
D= [w], wan rth-degree irrational:

w' =m

=D"+d, mDd e Z,,
with boundary conditions determined by

r) s<n+l
Ws,i = O5nt1 ‘I 1<n<r
W(r) = 05_1
s,r
(1) = py(r) ’
(2.2) W = oW W,

The initial values WS(,’), s > 2, have not been specified because they are not used in this development. They are readi-
ly determined from Eqgs. (2.1) and (2.2) if required.
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The table provides some examples of Ws(i)and W(j)
Each of the sequences can be expressed in terms of the fundamental sequence [8], {WM }

51

—1 ~f—=1 T

WS(Z: % <S] )DS] Wgﬁl—]
=0

Proof. When's = 1,2, we have respectively
w® = w™  and W(’) = DW(') ()
1,n 1,n In-1"

Suppose the result is true fors=17,2, - ¢

t-1
o) et~ [t—1\ (pti t-j-1
w = pw® ™ - L( ; ){g leti_jH] j Wger B

t+1 t,n t,n-1
j=0
! t— 1 t—1 (1) d tjy(r)
- - - *] T = Ty,
- SA( ) (o ipetw - X (Fe W,
=0 j=0
as required
3. LEMMAS
We define matrices M, VV,, :
0 1 g - 0
g 0 7 g
M= ,
o 0 g - 1
1 0 ’2)02 o
tr
N, = [Uﬁp] 1<k, p<r.
Lemma 1.
Nprr = M™N¢ .
Proof. The result clearly follows from induction an n, since whenn = 7,
0 1 .. ol ro 7 . g7
M/V1 = e - .
g 0 - 17 0 ) g - (}7
T~ r 13
_7 0 - L7 WZ,r+1 Wr,r+1
¥ g .. W(f)
=1 (f) =Ny,
Pl I
T r
Wl r+2 WZ r+2 W£7+Z
Nz = MN,

= MZIV1, and so on.
det, = (1" 1),
detM = (=7)™1 = detN;.
det N, = (—1)(V(n-1)1 7)f‘

r -

r—k k (1 r— k-1

("7 o), - z 20( AL
=

Lemma 2.

Proof.
= (- 7)n(r—1)

Lemma 3. >
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Proof. We consider coefficients of w:

Theorem. Fori k=

r~k~-1

=0

are solutions of the Pellian Diophantine equation

Proof. Lemma 3 becomes

(4.1)

(—7)n(r-1) =

det V" =
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r—-k-1
r— k —1 - k —1
Z ( )D]W1(4L)1 ﬂ+]+k+1 Z (r )D](DWM jrk+1 W{y{+]+k)
=0
e k= 1\ i)
_ r—k— j T r—k— T
R . { ( )D W: ntjtk+1 +( )Dl z,n+]+k}
=
o k-1 k-1 (r)
_ r—k— r—k — T
- Z {< j—1 ) < j )}D]th+1+k
j=0
ot (1)
- i ;
= < i )D itk as required .
=0
4. RESULT
7[ 2] “'I ,'I
r-k )
13
Xik = z ( j ) ] 1n+]+k
j=0
= D(m,; x1r, "'/er/-
Lok S ke
> owhxig = 20 W Xk
k=1 k=1
w( (r) (r)
1n+1 WZ,n+1 rntl
(r) (r) (r)
Wl,n+2 WZ,n+ Wr,n+2
(r) (r) (r)
W1,n+r WZ,n+r Wr,n+r
r-1 r
w() r—1\piy(r) w(™ r—1\piy(r)
Winer * Z( i )DJ 1,n#j+1 1{,n+1 +Z( ) W, i+t
=1 =1
W) =2\ i) W) - (r)
T r— T T i
1n+2 +‘ - < )D]WI,n+]+2 r,n+2 Z ( )D Wr,n+k+2
= =1
(r) (r) r (r)
W1 ntr-1 DWI,n+r W(r)z+r-1 +DWr n+r
w(r) w()
1 ntr r,n+r
X11  X21 Xr1
X
12 XZZW Xr2| _ D(m,'x1,, X,,)
Xir X2r Xrr
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by equating coefficients of wk in Eq. (4.1).

5. CONCLUSION
Consider, as examples: Whenr =2, m =2, we have

D = [\/5] =17, and X322 = Wgz) Xq2 = W(z)

Whe 7 n+2’ 1n+2"
nn=1,

X2 = Wg’zg =3, Xxq2= Wl(z_g =2
which satisfy , 5 ’
whenn =0, Y22 ™Mz " 4

X322 = ngzé =1 Xxq12= Wgzg =1,
which satisfy , 5 ’

X5, =MX,, = —1.

The relevant recurrence relation is
w?@) = 2p0w(2)  +w(2)
$,n s,n-1 s,n-2 "
Whenr =3, m = 9, we have

D=1[A3] =2 ad x33= Wg,}iﬂ’ X23 = ngn)ﬁ’ X13 = vaiﬂ :

Whenn =0, 5
X33 = Wg,j) =4, x33 = Wg‘g =2, Xy3 = Wg‘g =1,
which satisfy

2

S +mxl +m xf3—3mx13x23)(33 =1.

X33 23

The relevant recurrence relation is
w3 = 302w +30w3)  + w3 n>3.
N s,n~1 s,n-2 s,n-3’

There is scope for further research in generalizing the properties of the second-order Pellian sequence discussed by
Horadam [5]. The use of the Jacobi-Perron Algorithm in this context should be studied first [2]. The other way of
generalizing the Pellian equation, namely,

x"—my" =1,

is still an open and challenging question as Bernstein [4] remarked.
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