
PELLIAN DIOPHANTINE SEQUENCES 

A.G.SHANNON 
The New South Wales Institute of Technology, Broadway, Australia 

1. INTRODUCTION 

The so-called Pellian Diophantine equation is 

which can be generalized to 
x2 - ?x2 = 1 22 12 

\x22~mxi2\ = ; 
or 

ahs. i*22 nix12 

Vl2 X22 

A generalization of this is in turn provided by 

\xt 

(1.1) abs. 
xr-l,r 

Xlr 

mxir mx2r 
xrr mxf r 

*3r 

mxr,r-l 
mxr,r-2 

*2 

1. 

The aim of this paper is to construct a solution for this generalized Pellian Diophantine equation. The approach 
adopted is less general than that of Bernstein [1] but is, in a sense, more direct. For encouragement with an earlier 
draft of this paper thanks are due to Bernstein, whose works on pyramidal Diophantine equations [3] and the Jacobi-
Perron algorithm [2] should be seen for further extensions. We designate the determinant in Eq. (1.1) by 

D(m;xir, -,xrr) . 

2. SEQUENCES 

We define sequences {w' r ) } which satisfy the arbitrary order linear homogeneous recurrence relation 

(2.1) 

where 

n > r, V/T> = Y (r\Dr~iw(r) ., 
s,n —̂' \j) s,n-j 

j=l 

D = [w], w an r -degree irrational: 

w = m 

= Dr +d, 171,0,(1 e Z + , 
with boundary conditions determined by 

W(f> = 6, s < n + 1 
s,n 

r s < n + I 
>n+1 [l<„<r 

w(r) = Ds-1 

(2.2) W(r) = DWW + W(r\ , . 
y s,r s~l,n s-l,n-l 
The initial values W\\, s>2, have not been specified because they are not used in this development. They are readi-
ly determined from Eqs. (2.1) and (2.2) if required. 
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The table provides some examples of 
S Yl S Yl / \ 

Each of the sequences can be expressed in terms o'f the fundamental sequence [6], {\Ny } .-

W<* 

Proof. When s = 1,2, we have respectively 

s-l 

j=0 V J 

W(J) = W(r) a n d W(r) = m(r) +w(r) 
l,n l,n 2,n l,n l,n-l 

Suppose the result is true for 5 = 7,2, —, t. 

W(r) = DW(r)+W(r) = y lt-l\ IpHUr) m + DH-lyy(j) # 
t+l,n t,n t,n-l L-i \ j J L l,n-j l,n~J~ 

t-1 

3=0 

t 

as required 

We define matrices M, Nn .-

j=0 j=0 

3. LEMMAS 

M 

0 7 
0 0 

0 0 

0 .» 0 
7 .. 0 

7 
7 rD lr2\D

2 - rD r-l 

Lemma 1. 
Nn+1 = MnNt . 

Proof. The result clearly follows from induction on n, since when n = 7, 

MNi 

0 1 

0 0 
7 rD 

"0 

7 

- rDr-

0 

w(
2% 

N3 

°'\ 
1 

-1 

\° 
\° 
\1 

= MN2 

= l\ 

3 f ... 0 

0 ••• 7 
w(;) ... w(r) 

2,r+l r,r+l 
w(rl 1 

r,3 
W(r) 

r,r+l 

r,r+2 

= N2. 

/l2Nly andst ) on. 

Lemma 2. 
Proof. 

det/Vn = (-1)n(r-lJ. 
\r-l detM = (-IT1 = det/l/i. 

det/i/„ = (-rf'-iXn-Vf-f)''-! = (-7)n(r-^. 

Lemma3. ± L^^oty^ - £ £ f y * ) ^ ^ ^ -
fc=i j=0 k=l j=0 
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Proof. We consider coefficients of w: 

r-k-1 r-k-1 

L ( r - k - l\njw(r) = y> It - k - l\ nj(nW(r) +W(r) ) 
\ j ) U VVi+l,n+j+k+l 2^ \ j ) u \UVV^n+j+k+1 wi)n+j+k> 3=0 j=0 

r-k-1 

j=0 

j=0 

r-k 

j=0 

4. RESULT 

Theorem. Fori,k = 1,2, -,r, 

j=0 x 

are solutions of the Pellian Diophantine equation 
/ = D(m;xir, -,xrr). 

Proof. Lemma 3 becomes 
r r 

(4.1) E wkxik = £ ^fe"Vi,fe • 
k=l k=l 

(-1)n(r-l) = detNn 

i/\/(r) W(r) - W(r) 

VVl,n+l VV2,n+l Vr,n+1 
V l,n+2 2,n+2 r,n+2 

W(J) W(r) 
l,n+r 2,n+r 

r~l 
r,n+r 

W(r) + y (r-l)DJW(r) ... W(r) + y [ > - * \ / 7 % W .^ 
Wl,n+1 ^ \ j j Wl,n+j+l y\,n+l ^ [ j )U'"fr,n+j+l 

j=l 
r-2 

j=l 

Wl,n+2 2-r l / )UVVl,n+j+2 Vr,n+2 ^ [ j Vr,n+k+2 
j=l j=l 

l,n+r-l l,n+r 

l,n+r 

*11 X21 - xrl 
X12 X22 - Xr2 

\xlr x2r - xrr 

r,n+r—l r,n+r 

r,n+r 

D(m;xlr, -,xrr) 
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by equating coefficients of wk in Eq. (4.1). 

5. CONCLUSION 
Consider, as examples: When r = 2,m=2, we have 

When n = 1, 

which satisfy 

when n = 0, 

which satisfy 

D = U2] = I and x22 = W ^ , x12 = W^+2. 

*22 = W(2
2J = 3, x12 = w[2j = 2, 

X22-mX12= 1; 

*22 = W(l{ = I *12 = W^ = I 

The relevant recurrence relation is 

When r = 3, m =9, we have 

When n = 0, 

x222-mx2i2 = ~ ; -

W(2) = 2DW(2>+W(2) 
s,n s,n~l s,n-2 

D = IKJ91=2, and x33 - W ^ , x23 - tf£+y * « = < f j + i 

*33 = W(/J = 4, x23 = WJV = 2, x13 = W[3J = /, 
which satisfy 

x 3+mx23+m x13~3mxi3X23X33 = 1. 

The relevant recurrence relation is 

W(3) = 3D2W(3> , +3DW(3) 0+w(3) ,, n > 3. 
s,n s,n~l s,n~2 s,n-3 

There is scope for further research in generalizing the properties of the second-order Pellian sequence discussed by 
Horadam [5 ] . The use of the Jacobi-Perron Algorithm in this context should be studied first [2 ] . The other way of 
generalizing the Pellian equation, namely, 

xr-myr = 1, 

is still an open and challenging question as Bernstein [4] remarked. 
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