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Recently, R. L. Duncan discussed the Initial digit problem for the sequence of positive integers, J [1]. The sub-
sequence of positive integers with initial digit a e {1,2, — , 9} is denoted by A = [ay). Although the asymptotic 
density of A in J does not exist, the logarithmic density of Ŝ in J is log (1 + Ma), where logx is the common log-
arithm of x. 

The purpose of this note is to show that the relative asymptotic density of A in certain geometric sequences is also 
log (1 + Ma). 

Let c denote a positive integer which is not a power of ten. We adopt the following definitions. 
Definition 1. B(m) = [y\y = cn, n > 1, y < cm, m e J) . 
Definition 2. B' = I J B(m). 

m €E / 

Definition 3. A(m) = A n B(m). 
Definition 4. A' = A n B'. 

Definition 5. a(m) = YL 1 • 
yE:A(m) 

Definition 6. b(m) = ^ 1 = m . 
y^B(m) 

Clearly cm e A' iff 
(1) a10t < cm < (a+ 1)10* (t > 0). 

But (1) is equivalent to 
(2) \^Mi <m< tjtMk±t)\ 

L logs logc / 
Let 

L log c logc / 
and \lt+i | denote the length of lt+i. 

Obviously 
(3) \lt+1\ = ^(1+1/a) ^ I O C L ^ 7 

1 1] log c logs 
In fact, \/t+i\= 1 iff ̂ = 1 andc = 2. 

Let zt+i denote the midpoint of it+i. 

(4) =2t + \o$a(a+1) {t > Q) 

log c 

Lemma 1. {zt}?=1 is uniformly distributed mod 1. 

Proof. Jim (zt+1-zt) = lim —— = r-̂ — and T^— is irrational [2]. 
J t-^oo t->«»logc logs logs 
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Hence, {zt) ™=1 j s uniformly distributed mod 1 [3]. 
Lemma 2. a(Vl±^±l> ]) = |/j |/i + o(n), 

where [x] denotes the greatest integer in x. 

Proof. Obviously , x 

is the number of intervals, A/, 12, —, ln which contain an integer and this is /? less the number of intervals which con-
tain no integer. Since \lt+i\ < 1, it is clear that each interval contains at most one integer. If \lt+i\- 1 (c = 2,a = 1), 
then 

If \it+11 < 7, lt+i will not contain an integer if, and only if 

where zt+1 e f / , / + 1) for some integer,/. Using Lemma 1 and the definition of uniform distribution mod 1 [4 ] , we 
have 

...JiigAiiZ]).,, _„,„,,. (n) 

and the result follows. 
Let d(a) denote the relative asymptotic density of /TinS'defined as follows: 

(5) d(a) = lim y 1 /T 1 . 
dy<*x n<x 
dy<EA' n<EB' 

The upper and lower relative asymptotic densities of A' in B' are obtained by replacing " l imit" in (6) by "limit su-
perior" and "limit inferior," respectively, and are denoted by d(a) and d(a), respectively [5 ] . We conclude the dis-
cussion with our main result. 

Theorem. d(a) = log (1 + Ma). 
Proof. It is clear that 

J\i±Mk±Jl]\ 
(6) d(a)= lim U_]0M_ " 

J\l±Mja±m\ 
(7) W)= lim r , ^ , J 

\n + |Qg (a + n 1 „ n + |Qg fa * ^ 
•- log c J log c 

the application of Lemma 2 transforms (6) and (7) into 

(8) d(a) = lim ^A'^^l'i! = \'l | log £r = log f 1 + 1/a) 
log £7 

Since 

and 
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_ _ \/An+o(n) 
(9) d(a) = lim . l / _ L f l = |0g (1 + 1/a) 

logc 

and the desired conclusion follows. 
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******* 
ADDENDA TO ADVANCED PROBLEMS AND SOLUTIONS 

These problem solutions were inadvertently skipped over for a few years. Our apologies. 

FORM TO THE RIGHT 

H-211 Proposed by S. Krishman, Orissa, India, (corrected) 

A. Show that (™ jis of the form 2n 3k+2 when/? is prime and/7 > 3. 

B. Show that ( ^ n _ r / ) «S of the form n3k-2n2 -n, when/7 is prime. 

(m) represents the binomial coefficient, . m' .. . 

Solution by P. Tracy, Liverpool, New York. 

A. The Vandermonde convolution identity is P ) = 2 ( n ^ L) ( L_k ). Appling this to (2p) (using/. =p),\NB 
get m p 

F k-Q h=l V 

Sincep is a prime, p i (? ) for /r = 1,2, —,p - 1. Now 

{tfsp2 tp-lMp-2)~tp-k+1) 2
 (moAp3) 

Also (p - i)/i = -1 (mod p) and so 

4 E ( f e ) 2 " £ " 7 s * quad. res. (mod/?) 

(since every quadratic residue mod/7 has exactly two roots, ±a). Let# be a primitive root, mod/?, then the quadratic 
residues are p-3 

lg2,g4,~,g2 

To find the sum of the quadratic residues, we use the geometric sum formula to obtain (gP"1 - 1)/(g2 - 1). Note 
that/7 > 3 impl ies#2- 1^0 (mod/7). Hence Squad, res. = 0 (mod/?). Therefore 

[Continued on page 165.] *>'\X(t)2 a n d ( * } - ' <«»«• V ) . 


