GEOMETRIC SEQUENCES AND THE INITIAL DIGIT PROBLEM

RAYMOND E. WHITNEY

Lock Haven State College, Lock Haven, Pennsylvania

Recently, R. L. Duncan discussed the initial digit problem for the sequence of positive integers, J [1]. The subsequence of positive integers with initial digit $a \in\{1,2, \ldots, 9\}$ is denoted by $A=\{a \gamma\}$. Although the asymptotic density of A in J^{\prime} does not exist, the logarithmic density of A in J is $\log (1+1 / a)$, where $\log x$ is the common \log arithm of x.
The purpose of this note is to show that the relative asymptotic density of A in certain geometric sequences is also $\log (1+1 / a)$.
Let c denote a positive integer which is not a power of ten. We adopt the following definitions.
Definition 1.
Definition 2.
Definition 3.
Definition 4.

Definition 5.

Definition 6.

Clearly $c^{m} \in A^{\prime}$ iff
(1)

$$
a 10^{t} \leqslant c^{m}<(a+1) 10^{t} \quad(t \geqslant 0) .
$$

But (1) is equivalent to
(2)

$$
\begin{aligned}
& B(m)=\left\{y \mid y=c^{n}, n \geqslant 1, y \leqslant c^{m}, m \in J\right\} . \\
& B^{\prime}=\underbrace{}_{m \in J} B(m) . \\
& A(m)=A \cap B(m) . \\
& A^{\prime}=A \cap B^{\prime} . \\
& a(m)=\sum_{y \in A(m)} 1 .
\end{aligned}
$$

$$
b(m)=\sum_{y \in B(m)} 1=m .
$$

$$
\left[\frac{t+\log a}{\log c} \leqslant m<\frac{t+\log (a+1)}{\log c}\right) .
$$

Let

$$
t_{t+1}=\left[\frac{t+\log a}{\log c}, \frac{t+\log (a+1)}{\log c}\right) \quad(t \geqslant 0)
$$

and $\left|t_{t+1}\right|$ denote the length of t_{t+1}.
Obviously
(3)

$$
\left|I_{t+1}\right|=\frac{\log (1+1 / a)}{\log c} \leqslant \frac{\log 2}{\log c} \leqslant 1 .
$$

In fact, $\left|I_{t+1}\right|=1$ iff $a=1$ and $c=2$. Let z_{t+1} denote the midpoint of I_{t+1}.

$$
\begin{equation*}
z_{t+1}=\frac{2 t+\log a(a+1)}{\log c} \quad(t \geqslant 0) . \tag{4}
\end{equation*}
$$

Lemma 1. $\left\{z_{t}\right\}_{t=1}^{\infty}$ is uniformly distributed $\bmod 1$.
Proof. $\quad \lim _{t \rightarrow \infty}\left(z_{t+1}-z_{t}\right)=\lim _{t \rightarrow \infty} \frac{2}{\log c}=\frac{2}{\log c}$ and $\frac{2}{\log c}$ is irrational [2].

$$
152
$$

Hence, $\left\{z_{t}\right\}_{t=1}^{\infty}$ is uniformly distributed $\bmod 1$ [3].
Lemina 2. $\quad a\left(\left[\frac{n+\log (a+1)}{\log c}\right]\right)=\left|I_{1}\right| n+o(n)$,
where $[x]$ denotes the greatest integer in x.
Proof. Obviously

$$
a\left(\left[\frac{n+\log (a+1)}{\log c}\right]\right)
$$

is the number of intervals, $I_{1}, I_{2}, \cdots, I_{n}$ which contain an integer and this is n less the number of intervals which contain no integer. Since $\left|I_{t+1}\right| \leqslant 1$, it is clear that each interval contains at most one integer. If $\left|I_{t+1}\right|=1(c=2, a=1)$, then

$$
a\left(\left[\frac{n+\log 2}{\log 2}\right]\right)=n=\left|I_{1}\right| n+o(n)
$$

If $\left|I_{t+1}\right|<1, I_{t+1}$ will not contain an integer if, and only if

$$
z_{t+1} \in\left(j+\frac{\left|1_{1}\right|}{2}, j+1-\frac{\left|1_{1}\right|}{2}\right)
$$

where $z_{t+1} \in(j, j+1)$ for some integer, j. Using Lemma 1 and the definition of uniform distribution mod 1 [4], we have

$$
n-a\left(\left[\frac{n+\log (a+1)}{\log c}\right]\right)=\left(1-\left|I_{1}\right|\right) n+o(n)
$$

and the result follows.
Let $d(a)$ denote the relative asymptotic density of A^{\prime} in B^{\prime} defined as follows:

$$
\begin{equation*}
d(a)=\lim _{x \rightarrow \infty} \sum_{\substack{a \gamma \leqslant x \\ a \gamma \in A^{\prime}}} 1 / \sum_{\substack{n \leqslant x \\ n \in B^{\prime}}} 1 \tag{5}
\end{equation*}
$$

The upper and lower relative asymptotic densities of A^{\prime} in B^{\prime} are obtained by replacing "limit" in (6) by "limit superior" and "limit inferior," respectively, and are denoted by $\overline{d(a)}$ and $\underline{d(a)}$, respectively [5]. We conclude the discussion with our main result.

Theorem.

$$
d(a)=\log (1+1 / a)
$$

Proof. It is clear that
(6)

$$
\underline{d(a)}=\lim _{n \rightarrow \infty} \frac{a\left(\left[\frac{n+\log (a+1)}{\log c}\right]\right)}{b\left(\left[\frac{n+1+\log (a+1)}{\log c}\right]\right)-1}
$$

(7)

$$
\overline{d(a)}=\lim _{n \rightarrow \infty} \frac{a\left(\left[\frac{n+\log (a+1)}{\log c}\right]\right)}{b\left(\left[\frac{n+\log (a+1)}{\log c}\right]\right)}
$$

Since

$$
\left[\frac{n+\log (a+1)}{\log c}\right] \sim \frac{n+\log (a+1)}{\log c},
$$

the application of Lemma 2 transforms (6) and (7) into

$$
\begin{equation*}
\underline{d(a)}=\lim _{n \rightarrow \infty} \frac{\left|I_{1}\right| n+o(n)}{\frac{n+1+\log (a+1)}{\log c}+o(n)}=\left|\iota_{1}\right| \log c=\log (1+1 / a) \tag{8}
\end{equation*}
$$

and
(9)

$$
\overline{d(a)}=\lim _{n \rightarrow \infty} \frac{\left|I_{1}\right| n+o(n)}{\frac{n+\log (a+1)}{\log c}+o(n)}=\log (1+1 / a)
$$

and the desired conclusion follows.

REFERENCES

1. R. L. Duncan, "Note on the Initial Digit Problem," The Fibonacci Quarterly, Vol. 7, No. 5, pp. 474-475.
2. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., 1960, p. 46.
3. J. G. Van der Corput, "Diophantische Ungleichungen I: Zur Gleich Verteilung Modulo Eins," Acta Math., 193031 (378), pp. 55-56.
4. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., 1960, p. 390.
5. H. Halberstam and K. F. Roth, Sequences, Oxford, 1966, Vol. I.

ADDENDA TO ADVANCED PROBLEMS AND SOLUTIONS

These problem solutions were inadvertently skipped over for a few years. Our apologies.

FORM TO THE RIGHT

H-211 Proposed by S. Krishman, Orissa, India. (corrected)
A, Show that $\binom{2 n}{n}$ is of the form $2 n^{3} k+2$ when n is prime and $n>3$.
B. Show that $\binom{2 n-2}{n-1}$ is of the form $n^{3} k-2 n^{2}-n$, when n is prime.

$$
\binom{m}{j} \text { represents the binomial coefficient, } \frac{m!}{j!(m-j)!} .
$$

Solution by P. Tracy, Liverpool, New York.
A. The Vandermonde convolution identity is $\left.\binom{n}{m}=\Sigma^{\prime n} \begin{array}{c}n-L\end{array}\right)\binom{L}{m-k}$. Appling this to $\binom{2 p}{p}$ (using $\left.L=p\right)$, we get

$$
\binom{2 p}{p}=\sum_{k=0}^{p}\binom{p}{k}^{2}=2+\sum_{k=1}^{p-1}\binom{p}{k}^{2} .
$$

Since p is a prime, $p \left\lvert\,\binom{ p}{k}\right.$ for $k=1,2, \cdots, p-1$. Now

$$
\binom{p}{k}^{2} \equiv p^{2} \quad \frac{(p-1)(p-2) \ldots(p-k+1)^{2}}{k!}\left(\bmod p^{3}\right)
$$

Also $(p-i) / i \equiv-1(\bmod p)$ and so

$$
\frac{1}{p^{2}} \sum_{k=1}^{p-1}\left(\frac{p}{k}\right)^{2} \equiv \sum_{k=1}^{p-1} \frac{1}{k^{2}} \equiv 2 \quad \text { quad. res. }(\bmod p)
$$

(since every quadratic residue $\bmod p$ has exactly two roots, $\pm a$). Let g be a primitive root, $\bmod p$, then the quadratic residues are

$$
1, g^{2}, g^{4}, \cdots, g^{\frac{p-3}{2}}
$$

To find the sum of the quadratic residues, we use the geometric sum formula to obtain (g $\left.g^{p-1}-1\right) /\left(g^{2}-1\right)$. Note that $p>3$ implies $g^{2}-1 \not \equiv 0(\bmod p)$. Hence Σ quad. res. $\equiv 0(\bmod p)$. Therefore
[Continued on page 165.]

$$
2 p^{3} \left\lvert\, \sum_{k=1}^{p-1}\binom{p}{k}^{2} \quad\right. \text { and } \quad\binom{2 p}{p} \equiv 2\left(\bmod 2 p^{3}\right)
$$

