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AN INEQUALITY FOR A CLASS OF POLYNOMIALS 

DAVID ZEITLIN 
Minneapolis, Minnesota 55411 

1. INTRODUCTION 

Recently, Klamkin and Newman [1], using double induction, proved that 

n-D E *{ <(£ *fcY t" = it-..), 
k=l \k=l I 

where Ay, is a non-decreasing sequence with AQ = 0 and Ay, -A^-i < /. for Ak = k, (1.1) gives the well known 
elementary identity 

(1.2) £ k3 = (' Z kV (n = 1,2,...). 

Our inequality (2.1) for polynomials in a single variable* gives (1.1) for* = /. 

2. A POLYNOMIAL INEQUALITY 
Our first general result is given by 

Theorem 1. Let C^ be a non-decreasing sequence with Co = O and £% - BC^1 < 1,k= 1,2, —, where B 
is a constant, O <B < 1. Then, forx > 1, we have the inequality 

(2.1) Z C'lxh <(JT Ckxk) (n = 1,2,...). 
k=t \k=i I 

Proof. We will use double induction. For/7 = 1, (2.1) requires that C3x < C^x2, or C2x(Ci - x) < O, which 
is true, since Ci < f and x > 1. Assuming (2.1) is true for k= 1,2, ••-,/?, we must now show that 



1978 AN INEQUALITY FOR A CLASS OF POLYNOMIALS 128 

n+l n / n \ 2 / n+l \ 2 

E #*-C**"+i + £ •'<Ci*B+i+(2: vM < ( E <**'). 
which requires the truth of 

(2.2) * f Ckxk > C2
n+1-Cn+1xn+1 (n = 1,2, - A 

k=l 

For/7 = /, (2.2) gives 

^2 " C2x2 < ^ * ' 
Sincex> 1fx2C2 >C2, 

c2
2-c2x2 < c|-£2; 

but C2 - #£ i < /, and so 

c\-C2 < C1BC2 < CiB(1+BCi) < CtB(1 + B) < ^ < 2 ^ * , 

which is true since B(1+B)<2iorO<B< I Assuming (2.2) is true for k= 1,2, ••>, n, we must show that 

2 £ Ckxk > 2Cn+1xn+1 + (C2
n+1 - Cn+1xn+1) > C2

+2 - Cn+2x«+2 , 
k=l 

xn+1(xCn+2 + Cn+1) > C2-C2 n = 1,2,-. 
which requires that 

v
n+1t„r ~ + r .. J -> t 

n+2 n+l 
Since B <1, -BCn+i > -Cn+i, and so 

&n+2 ~ Cn+1 ^ Cn+2 ~ B^n+1 < 1. 
Hence 

Cn+2 " Cn+1 ** °n+2 + °n+1 < xYl (xCn+2 + Cn+l), 
since x > 1. Thus, the truth of (2.2) completes the proof of Theorem 1. 

In [1,p. 29] , the following, 

Lemma. If x,y >0,p>2, then p(x - yHx?'1 + y?"1) > 2(xp - yp), 

was used to generalize (1.1) (see [ 1 , (18), p. 29]). Using the above lemma and double induction, we now obtain a 
generalization of Theorem 1, i.e., 

Theorem 2. Let Ck be a non-decreasing sequence with CQ = 0 and Cy, - BC^-i < 1,k= 1,2, - , where B 
is a constant,0 <B < 1. Then, forx > 1 and p = 2, 3, - ^ w e have tl}€ polynomial inequality 

(2-3) 2 E c2P-*xk <p(E CP-'XA (n = 1,2, •••). 
k=l \k=l I 

Remarks. Forp=2, (2.3) gives (2.1). For B= 1 mdx= 1, (2.3) gives (18) of [1 , p. 29] , and (2.1) gives (1.1). The 
proof of Theorem 2, similar to the proof of Theorem 1, is omitted. We note that when Ck - BCk-i = 1fork=1,2, 
- , t h e n 

Ck = (1-Bk)/(1-B), 
B11 and Cfe = k for B = 1. For B = 0 and Ck= 1,k= 1, 2, • •, (2.1) gives 

n 
i < £ xk 

k=i 

so that for/7 = 1, 1 <x, as required. 

[Continued on page 146.] 


