REFERENCES

1. N. N. Vorob'ev, Fibonacci Numbers, Blaisdell Publishing Company, New York, 1961.
2. Ken Siler, "Fibonacci Summations," The Fibonacci Quarterly, Vol. 1, No. (1963), pp. 67-69.
3. David Zeitlin, "On Summation Formulas for Fibonacci and Lucas Numbers," The Fibonacci Quarterly, Vol. 2, No. 1 (1964), pp. 105-107.
4. V. E. Hoggatt, Jr., and D. A. Lind, "A Primer for the Fibonacci Numbers, Part VI," The Fibonacci Quarterly, Vol. 5, No. 4 (1967), pp. 445-460.
5. V. E. Hoggatt, Jr., "A New Angle on Pascal's Triangle," The Fibonacci Quarterly, Vol. 6, No. 2 (1968), pp. 221-234.
6. V. E. Hoggatt, Jr., and I. D. Ruggles, "A Primer for the Fibonacci Sequence: Part III," The Fibonacci Quarterly, Vol. 1, No. 1 (1963), pp. 61-65.
7. H. T. Leonard, Jr., Fibonacci and Lucas Identities and Generating Functions, San Jose State College Master's Thesis, 1969.
8. L. Carlitz and H. H. Ferns, "Some Fibonacci and Lucas Identities," The Fibonacci Quarterly, Vol. 8, No. 1 (1970), pp. 61-73.
9. John Riordan, "Generating Functions for Powers of Fibonacci Numbers," Duke Math. J., (29) (1962) pp. 5-12.
10. R. T. Hansen, "Generating Identities for Fibonacci and Lucas Triples," The Fibonacci Quarterly, Vol. 10, No. 6 (1972), pp. 571-578.

AN INEQUALITY FOR A CLASS OF POLYNOMIALS

DAVID ZEITLIN

Minneapolis, Minnesota 55411

1. INTRODUCTION

Recently, Klamkin and Newman [1], using double induction, proved that

$$
\begin{equation*}
\sum_{k=1}^{n} A_{k}^{3} \leqslant\left(\sum_{k=1}^{n} A_{k}\right)^{2} \quad(n=1,2, \cdots) \tag{1.1}
\end{equation*}
$$

where A_{k} is a non-decreasing sequence with $A_{0}=0$ and $A_{k}-A_{k-1} \leqslant 1$. For $A_{k}=k$, (1.1) gives the well known elementary identity

$$
\begin{equation*}
\sum_{k=1}^{n} k^{3}=\left(\sum_{k=1}^{n} k\right)^{2} \quad(n=1,2, \cdots) \tag{1.2}
\end{equation*}
$$

Our inequality (2.1) for polynomials in a single variable x gives (1.1) for $x=1$.

2. A POLYNOMIAL INEQUALITY

Our first general result is given by
Theorem 1. Let C_{k} be a non-decreasing sequence with $C_{0}=0$ and $C_{k}-B C_{k-1} \leqslant 1, k=1,2, \cdots$, where B is a constant, $0 \leqslant B \leqslant 1$. Then, for $x \geqslant 1$, we have the inequality

$$
\begin{equation*}
\sum_{k=1}^{n} c_{k}^{3} x^{k} \leqslant\left(\sum_{k=1}^{n} c_{k} x^{k}\right)^{2} \quad(n=1,2, \cdots) \tag{2.1}
\end{equation*}
$$

Proof. We will use double induction. For $n=1$, (2.1) requires that $C_{1}^{3} x \leqslant C_{1}^{2} x^{2}$, or $C_{1}^{2} x\left(C_{1}-x\right) \leqslant 0$, which is true, since $C_{1} \leqslant 1$ and $x \geqslant 1$. Assuming (2.1) is true for $k=1,2, \cdots, n$, we must now show that

$$
\sum_{k=1}^{n+1} c_{k}^{3} x^{k}=C_{n+1}^{3} x^{n+1}+\sum_{k=1}^{n} c_{k}^{3} x^{k} \leqslant c_{n+1}^{3} x^{n+1}+\left(\sum_{k=1}^{n} c_{k} x^{k}\right)^{2} \leqslant\left(\sum_{k=1}^{n+1} c_{k} x^{k}\right)^{2}
$$

which requires the truth of
(2.2)

$$
2 \sum_{k=1}^{n} c_{k} x^{k} \geqslant c_{n+1}^{2}-C_{n+1} x^{n+1} \quad(n=1,2, \cdots)
$$

For $n=1$, (2.2) gives

$$
c_{2}^{2}-C_{2} x^{2} \leqslant 2 C_{1} x
$$

Since $x \geqslant 1, x^{2} C_{2} \geqslant C_{2}$,

$$
c_{2}^{2}-c_{2} x^{2} \leqslant c_{2}^{2}-c_{2}
$$

but $C_{2}-B C_{1} \leqslant 1$, and so

$$
C_{2}^{2}-C_{2} \leqslant C_{1} B C_{2} \leqslant C_{1} B\left(1+B C_{1}\right) \leqslant C_{1} B(1+B) \leqslant 2 C_{1} \leqslant 2 C_{1 x}
$$

which is true since $B(1+B) \leqslant 2$ for $0 \leqslant B \leqslant 1$. Assuming (2.2) is true for $k=1,2, \cdots, n$, we must show that

$$
2 \sum_{k=1}^{n+1} c_{k} x^{k} \geqslant 2 C_{n+1} x^{n+1}+\left(C_{n+1}^{2}-C_{n+1} x^{n+1}\right) \geqslant c_{n+2}^{2}-C_{n+2} x^{n+2}
$$

which requires that

$$
x^{n+1}\left(x C_{n+2}+C_{n+1}\right) \geqslant C_{n+2}^{2}-C_{n+1}^{2}, \quad n=1,2, \cdots .
$$

Since $B \leqslant 1,-B C_{n+1} \geqslant-C_{n+1}$, and so

$$
C_{n+2}-C_{n+1} \leqslant C_{n+2}-B C_{n+1} \leqslant 1 .
$$

Hence

$$
C_{n+2}^{2}-C_{n+1}^{2} \leqslant C_{n+2}+C_{n+1} \leqslant x^{n+1}\left(x C_{n+2}+C_{n+1}\right)
$$

since $x \geqslant 1$. Thus, the truth of (2.2) completes the proof of Theorem 1 .
In [1, p. 29], the following,
Lemma. If $x, y \geqslant 0, p \geqslant 2$, then $p(x-y)\left(x^{p-1}+y^{p-1}\right) \geqslant 2\left(x^{p}-y^{p}\right)$,
was used to generalize (1.1) (see [1, (18), p. 29]). Using the above lemma and double induction, we now obtain a generalization of Theorem 1, i.e.,
Theorem 2. Let C_{k} be a non-decreasing sequence with $C_{0}=0$ and $C_{k}-B C_{k-1} \leqslant 1, k=1,2, \cdots$, where B is a constant, $0 \leqslant B \leqslant 1$. Then, for $x \geqslant 1$ and $p=2,3, \cdots$, we have the polynomial inequality

$$
\begin{equation*}
2 \sum_{k=1}^{n} c_{k}^{2 p-1} x^{k} \leqslant p\left(\sum_{k=1}^{n} c_{k}^{p-1} x^{k}\right)^{2} \quad(n=1,2, \cdots) . \tag{2.3}
\end{equation*}
$$

Remarks. For $p=2,(2.3)$ gives (2.1). For $B=1$ and $x=1$, (2.3) gives (18) of [1, p. 29] , and (2.1) gives (1.1). The proof of Theorem 2, similar to the proof of Theorem 1 , is omitted. We note that when $C_{k}-B C_{k-1}=1$ for $k=1,2$, \cdots, then

$$
C_{k}=\left(1-B^{k}\right) /(1-B)
$$

$B \neq 1$ and $C_{k}=k$ for $B=1$. For $B=0$ and $C_{k}=1, k=1,2, \cdots,(2.1)$ gives

$$
1 \leqslant \sum_{k=1}^{n} x^{k}
$$

so that for $n=1,1 \leqslant x$, as required.

[Continued on page 146.]

