and
(5.3)

$$
0=\sum_{k=n}^{2 n}(-1)^{k} \sum_{j=0}^{k-n}\binom{n}{j}\binom{n-j}{2 n-k} A_{n+j, k}
$$

In view of the combinatorial interpretation of $A_{n, k}$ and $G_{n, m}$, (5.2) implies a combinatorial result; however the result in question is too complicated to be of much interest.
For $p=3$, consider
$6^{n} x \frac{G_{n}^{(3)}(x)}{(1-x)^{3 n+1}}=\sum_{k=0}^{\infty} k^{n}\left(k^{2}-1\right)^{n} x^{k}=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \sum_{k=0}^{\infty} k^{n+2 j} x^{k}=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \frac{A_{n+2 j}(x)}{(1-x)^{n+2 j+1}}$.
Thus we have

$$
\begin{equation*}
6^{n} x G_{n}^{(3)}(x)=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}(1-x)^{2 n-2 j} A_{n+2 j}(x) \tag{5.4}
\end{equation*}
$$

The right-hand side of (5.4) is equal to
$\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \sum_{s=0}^{2 n-2 j}(-1)^{s}\binom{2 n-2 j}{s} x^{s} \sum_{k=1}^{n+2 j} A_{n+2 j, k} x^{k}=\sum_{m=1}^{3 n} x^{m} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \sum_{k=1}^{n+2 j}(-1)^{m-k}\binom{2 n-2 j}{m-k} A_{n+2 j, k}$.
It follows that
(5.5)

$$
6^{n} G_{n, m-1}^{(3)}=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \sum_{k=1}^{n+2 j}(-1)^{m-k}\binom{2 n-2 k}{m-k} A_{n+2 j, k}
$$

REFERENCES

1. L. Carlitz, "Eulerian Numbers and Polynomials," Mathematics Magazine, 30 (1958), pp. 203-214.
2. L. Carlitz, "Extended Bernoulli and Eulerian Numbers," Duke Mathematical Journal 31 (1964), pp. 667-690.
3. L. Carlitz, "Enumeration of Sequences by Rises and Falls: A Refinement of the Simon Newcomb Problem," Duke Mathematical Journal, 39 (1972), pp. 267-280.
4. J. F. Dillon and D. P. Roselle, "Simon Newcomb's Problem," SIAM Journal on Applied Mathematics, 17 (1969), pp. 1086-1093.
5. P. A. M. MacMahon, Combinatorial Analysis, Vol. I, University Press, Cambridge, 1915.
6. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.

[Continued from page 129.]

Recalling [2, p. 137] that

$$
(j+1) \sum_{k=1}^{n} k^{j}=B_{j+1}(n+1)-B_{j+1}
$$

where $B_{j}(x)$ are Bernoulli polynomials with $B_{j}(0)=B_{j}$, the Bernoulli numbers, we obtain from (2.3) with $x=1, B=$ 1, and $C_{k}=k$ the inequality

$$
\text { (2.4) } \quad B_{2 p}(n+1)-B_{2 p} \leqslant\left(B_{p}(n+1)-B_{p}\right)^{2} \quad(n=1,2, \cdots)
$$

For $p=2 k+1, k=1,2, \cdots, B_{2 k+1}=0$, and so (2.4) gives the inequality

$$
\begin{equation*}
B_{4 k+2}(n+1)-B_{4 k+2} \leqslant B_{2 k+1}^{2}(n+1) \quad(n, k=1,2, \cdots) \tag{2.5}
\end{equation*}
$$

3. AN INEQUALITY FOR INTEGER SEQUENCES

Noting that $U_{k}=k$ satisfies the difference equation

[Continued on page 151.]

$$
U_{k+2}=2 U_{k+1}-U_{k}
$$

