## ACKNOWLEDGEMENT

Thanks are due to Professor Robert Silber for sending the author preprints of some of his forthcoming articles on Fibonacci representations, thus making available further information, including references.

## REFERENCES

1. W. W. R. Ball, "Mathematical Recreations and Essays" (revised by H. S. M. Coxeter) Macmillan, 1947.
2. C. L. Bouton, "Nim, a Game with a Complete Mathematical Theory," Annals of Mathematics, Series 2, Vol. 3, 1902, pp. 35-39.
3. L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., "Fibonacci Representations," The Fibonacci Quarterly, Vol. 10, 1972, pp. 1-28.
4. L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., "Addendum to the Paper 'Fibonacci Representations'," The Fibonacci Quarterly, Vol. 10, 1972, pp. 527-530.
5. H. S. M. Coxeter, "The Golden Section, Phyllotaxis, and Wythoff's Game," Scripta Mathematica, Vol. 19, 1953, pp. 135-143.
6. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin, 1969.
7. A. F. Horadam, "A Generalized Fibonacci Sequence," American Math. Monthly, Vol. 68 (5), 1961, pp. $455-$ 459.
8. C. G. Lekkerkerker, "Voorstelling van natuurlyke getallen door een som van getallen van Fibonacci," Simon Stevin, Vol. 29, 1951-52, pp. 190-195.
9. R. Silber, "A Fibonacci Property of Wythoff Pairs," The Fibonacci Quarterly, Vol. 14, 1976, pp. 380-384.
10. R. Silber, "Wythoff's Nim and Fibonacci Representations," Preprint (to appear, The Fibonacci Quarterly).
11. W. A. Wythoff, "A Modification of the Game of Nim," Nieuw Archief voor WisKunde, Vol. 7 (2), 1907, pp. 199-202.
[Continued from page 146.]
and that $V_{n}=2$ satisfies
we can rewrite (1.2) as

$$
V_{n+2}=2 V_{n+1}-V_{n},
$$

$$
2 \sum_{k=1}^{n} u_{k}^{3}=v_{n}\left(\sum_{k=1}^{n} u_{k}\right)^{2}
$$

This suggests the following result for integer sequences.
Conjecture. Let $U_{k}$, with $U_{0}=0, U_{1}=1$, and $V_{k}$, with $V_{0}=2, V_{1}=P$, be two solutions of

$$
W_{k+2}=P W_{k+1}+Q W_{k}, \quad k=0,1, \cdots
$$

where $P$ and $Q$ are integers with $P \geqslant 2$ and $P+Q \geqslant 1$. We then claim that

$$
\begin{equation*}
2 \sum_{k=1}^{n} U_{k}^{3} \leqslant V_{n}\left(\sum_{k=1}^{n} U_{k}\right)^{2} \quad(n=1,2, \cdots) . \tag{3.1}
\end{equation*}
$$

Remarks. For $P=2$ and $Q=-1,(3.1)$ gives (1.2). Using double induction, one can prove the conjecture for $P+Q$ $\geqslant 3$, which leaves the two cases $P+Q=2$ and $P+Q=1$ open.

REFERENCES

1. M. S. Klamkin and D. J. Newman, "Inequalities and Identities for Sums and Integrals," Amer. Math. Monthly, 83 (1976), pp. 26-30.
2. L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan, London, 1960.

## *****

