WYTHOFF PAIRS

ACKNOWLEDGEMENT

Thanks are due to Professor Robert Silber for sending the author preprints of some of his forthcoming articles on Fibonacci representations, thus making available further information, including references.

REFERENCES

- 1. W. W. R. Ball, "Mathematical Recreations and Essays" (revised by H. S. M. Coxeter) Macmillan, 1947.
- C. L. Bouton, "Nim, a Game with a Complete Mathematical Theory," Annals of Mathematics, Series 2, Vol. 3, 1902, pp. 35–39.
- L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., "Fibonacci Representations," The Fibonacci Quarterly, Vol. 10, 1972, pp. 1–28.
- 4. L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., "Addendum to the Paper 'Fibonacci Representations'," The Fibonacci Quarterly, Vol. 10, 1972, pp. 527-530.
- H.S.M. Coxeter, "The Golden Section, Phyllotaxis, and Wythoff's Game," Scripta Mathematica, Vol. 19, 1953, pp. 135–143.
- 6. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin, 1969.
- A. F. Horadam, "A Generalized Fibonacci Sequence," American Math. Monthly, Vol. 68 (5), 1961, pp. 455– 459.
- 8. C. G. Lekkerkerker, "Voorstelling van natuurlyke getallen door een som van getallen van Fibonacci," Simon Stevin, Vol. 29, 1951–52, pp. 190–195.
- 9. R. Silber, "A Fibonacci Property of Wythoff Pairs," The Fibonacci Quarterly, Vol. 14, 1976, pp. 380–384.
- 10. R. Silber, "Wythoff's Nim and Fibonacci Representations," Preprint (to appear, The Fibonacci Quarterly).
- 11. W. A. Wythoff, "A Modification of the Game of Nim," *Nieuw Archief voor WisKunde,* Vol. 7 (2), 1907, pp. 199–202.

[Continued from page 146.]

and that $V_n = 2$ satisfies

$$V_{n+2} = 2V_{n+1} - V_n$$

we can rewrite (1.2) as

$$2\sum_{k=1}^{n} U_{k}^{3} = V_{n} \left(\sum_{k=1}^{n} U_{k}\right)^{2}.$$

This suggests the following result for integer sequences.

Conjecture. Let U_k , with $U_0 = 0$, $U_1 = 1$, and V_k , with $V_0 = 2$, $V_1 = P$, be two solutions of

$$W_{k+2} = PW_{k+1} + QW_k, \quad k = 0, 1, \cdots,$$

where P and Q are integers with $P \ge 2$ and $P + Q \ge 1$. We then claim that

(3.1)
$$2 \sum_{k=1}^{n} U_{k}^{3} \leq V_{n} \left(\sum_{k=1}^{n} U_{k} \right)^{2} \qquad (n = 1, 2, ...).$$

Remarks. For P = 2 and Q = -1, (3.1) gives (1.2). Using double induction, one can prove the conjecture for $P + Q \ge 3$, which leaves the two cases P + Q = 2 and P + Q = 1 open.

REFERENCES

- 1. M. S. Klamkin and D. J. Newman, "Inequalities and Identities for Sums and Integrals," *Amer. Math. Monthly*, 83 (1976), pp. 26–30.
- 2. L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan, London, 1960.
