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Let Fm be the 777th cyclotomic polynomial. Bang [1] has shown that for m = 
pqv> a product of three odd primes with p < q < r, tile coefficients of Fm(x) 
do not exceed p - 1 in absolute value. The smallest such m is 105 and the co-
efficient of x7 in F105 is -2. It might be assumed that coefficients 2 and/ 
or -2 occur in every Fs . This is not so. It is the purpose of this paper 
to characterize the pairs q9r in m = 3qr such that no coefficient of absolute 
value 2 can occur in F3 . 

1. PRELIMINARIES 
<p{m) 

Let Fm(x) = 2.enxn. Then for m=3qr9 on i s de termined [1] by t h e number 
n = 0 

of p a r t i t i o n s of n of t h e form: 
n = a + 3aq + 33^ + yqr +' 6xq + 6 2 P , 

0 <_ a < 3; a, 3, Y, nonnegative integers; 6i e {0, l} . If n has no such par-
tition, on = 0. Each partition of n in the form (1) contributes +1 to the 
value of cn if &x = 62, but -1 if Sl ^ 62. Because Fm(x) is symmetric, we 
consider only n <. <p(m)/2 = (q - 1) (r - 1) . For n > (q - 1) (r - 1) , cn = £nr , with 
n' = <P(m) -n. We note that for n <_ (q - 1) (r - 1) , y in (1) must be zero. 

A permissible partition of n is therefore one of these four: 

Px = a1 + 3044 + 33^, P2 = a2 + 3a2^ + 33 2P + q + r, 
(2) 

P3 = a3 + 3a3^ + 3g3r + q9 Fh = ah + 30^4 + 3 3 ^ + r. 

Partitions Px and P2 will each contribute +1 to on, while P3 and P4 will each 
contribute -1. When n <_ (q - 1) (r - 1) , only one partition for each P̂  , *£ = 1, 
..., 4, is possible [1]. 

Lzmma 7: For any 3^ in (2), 33^ <. q - 2 for all q. 

Psioofi: Following Bloom [3] we have 3 3 ^ <_ (q - 1) (r - 1) < (q - l)r. Thus, 
33; < q - 1. 

CoKoltaAiji 33; <. q - 3 for i = 2, 4. 

Lemma 2: Either r + q E 0 (mod 3) or r - ̂  E 0 (mod 3), for all primes q 
and r with 3 < q < r. 
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Vtioohi Let q = 2k +' 1, r = 2 ^ + 1. Since 3 divides one and only one of 
the numbers 2t, 2(t + l) when 2t + l is a prime, it follows that 3 divides one 
and only one of the numbers r + q = 2(k + k\ + 1 ) or r - q = 2(k - kx). 

2. BOUNDS ON THE COEFFICIENTS 

We set 3 < q < r and make repeated use of the expressions: 

P2 - Pl = a2 - ax + 3(a2 - 04)4 + 3(32 - B 2 ) P + 4 + r = 0; (3) 

p4 - p3 = ah ~ a3 + 3(a4 - a3)q + 3(3^ - $3)r + r - q = 0. (4) 

Tk^oXQjn 1: In F3qr (x), 

(a) if r - 4 = 0 (mod 3), then -1 <. an <. 2, 

(b) if v + q E 0 (mod 3), then -2 <. cn <. 1. 

VKOofa ofi [d] 1 Assume en - -2 for some n, i.e., partitions of n of forms 
P3 and P4 exist. Taking (4), modulo 3, we obtain ah - a3 = 0 (mod 3). But 
a < 3, so that a4 = a3. Now taking (4), modulo q9 we obtain [3(3̂ . — 33) + 
l]r = 0- (mod 3). Then 3(3^ - 63) + 1 = $q, for some integer 3 ^ 0 . Either 
3(34 - 33) = $q - 1 >. q - 1, or 3(33 - 30 = I 3 k + 1 •> 4 + 1- B u t 3 3 ^ ^ - 2 
by Lemma 1. Therefore, P3 and P^ cannot both exist and we have on ^ -2. 

The proof of (b) follows from a similar argument by considering (3), mod-
ulo 3, and then modulo q. 

RemcVlk 1: F3 may have a coefficient of 2 or of -2 but not of both. 

RomoAk 1\ If q and r are twin primes, ov = -2 with P3 = 2 4- q9 Ph = r3. 

3. SPECIAL CASES 

Before taking up the general case, we consider r = kq ± 1 and r = fcq ± 2. 
We prove a theorem about r - kq ± 1. 

Tk^OXQjm 2: Let r = kq ± 1. In P3 (xc) , | on | <.l if and only if k = 0 (mod 
3). 

Vnooh*. To show the sufficiency of the condition, let r = 3/zq + 1, with 
q = 1 (mod 3). Then r - q = 0 (mod 3), and on + -2 by Theorem 1. We show 
on i1 2, i.e., there is no n for which partitions Px and P2 can both exist. 
Taking (3), modulo 3, we obtain a2 - al = 1 or -2. We note that 2? = 1 (mod 
q). Then (3), modulo q9 leads to one of the equations: 

3(32 - 3X) = 3q - 2 or 3(32 - Si) = 3<7 + 1 

with 3 = 2 (mod 3). Obviously, there is no value of 3 which satisfies Lemma 
1. Hence there is no n9 0 <. n <_ (q - 1) (r - 1) , for which partitions Pl and P2 

both exist. Similarly, with q = 2 (mod 3), it can be shown that there is no 
n for which partitions P3 and P4 can both exist. When r = 3hq-l, r = 2 (mod 
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3). If q = 2, the proof leads to the same two equations as above with 3 = 1. 
Thus both equations are inconsistent with Lemma 1. If q = 1, the same equa-
tions appear with 32 and 3i replaced by 3^ and 33, respectively, and 3 = 2 . 
Thus \cn] <_ 1. 

The necessity of the condition k = 0 (mod 3) is shown by the counterex-
amples in Table 1. Values of k are given modulo 3. For each n, other par-
titions are not possible. We illustrate with the first counterexample, v = 
kq + 1 with k = 1. The only possible r and q are r = 2 and <? = 1 (mod 3). 
Note that for n = r, n = 2 (mod 3). Thus in partitions Px or P2, al=a2 = 2. 
Then Px = 2 + 3a ̂  + 33i^ = r = P2 = 2 + 3a2q + 332^ + (7 + r. In neither Px 

nor P2 is it possible to find nonnegative a and 3 to satisfy the equations. 
Hence, the coefficient of xT in F3qr is -2. 

Table 1 r = kq ± 1 

k 
(mod 3) 

1 
1 
2 
2 

2» 

fo? + 1 
kq - 1 
fc? + 1 
kq - 1 

P3 = 
P* = 

* i = 

Pi = 

Par t i t ions of n 

1 + (fc - \)q + (7 
(fe - Dqr + (7 
1 + (fc + D<? 
(fc + D<7 

Pi> = 3? 

P4 = 1 + r 

P2 = <7. + r • 
P2 = 1 + q + r 

Examples 

^n 

-2 

-2 
2 
2 

1 ^ 
7 
5 
5 
7 

2» 

29 
19 
41 
13 

n 

29 
20 
46 
21 

Th<M)H,m 3: Let r = kq ± 2. In P3q2, Or), |eM| <_ 1 if and only if k - 0 and 
g = 1 (mod 3). 

The proof follows the method in Theorem 2 and is omitted here. Table 2 
gives counterexamples to show the necessity. 

Table 2 v = kq ± 2 

& 
(mod 3) 

M Q ^ 

111 "5 

^0 J 1 

1 

2 

2 

r 

kq + 2 

kq - 2 

kq + 2 

kq - 2 

kq + 2 

kq - 2 

* i = 

* 3 = 

* 3 = 

^ 3 = 

Pi = 

* 1 = 

P a r t i t i o n s of n 

2+ (q + ])z>/2 

(q + ])r/2+q 

(k - ])q+q + 2 

(k - ])q + q 

(k + })q + 2 

(k + 1) 

P 2 = 1 + (q -

Ph = 1 + (q -

Pk = r 

Pk = r + 2 

P2 = q + r 

P 2 = q + r + 

1) fo?V2 + (7 + r 

])kq/2+r 

2 

Examples 
Gn j 

2 

-2 

-2 

-2 

2 

2 

1 ? 
5 

5 

5 

7 

7 

5 

r 

17 

13 

37 

47 

37 

23 

n 

53 
44 

37 

49 
44 

30 
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k. THE GENERAL CASE 

More generally, for all primes q and r with 3 < q < p, we have v = (kq + 
l)//25 or v = (kq - l)/h, h <_ (q - l)/2. If h = 1, Theorem 2 applies. There-
fore we set 1 < h. In v = (/cq ± l)//z, we may consider 2% <?, &, ±1 as four 
independent variables with h dependent. Since v and q each have two possible 
values modulo 3 and k has three, there are 24 cases to be examined. We shall 
examine one of them. Then we shall present Table 3 showing all 24 cases and 
from the table we form a theorem which states conditions on q and v so that 
\en\ <. 1 in F3qp. 

First we take rEqE±9k = 0 (mod 3) in r = (kq-l)/h9 1 < h <, (q-l)/29 
Note that In = 2. Since r - q = 0 (mod 3) , o / -2 by Theorem 1. We show 
on £ 2. Taking (3), modulo 3, we find a2 - czx = -2 or 1. Then taking (3), 
modulo q9 we obtain two possible congruences: 

-2 + [3(32 - Br) + 1K-1//0 = 0 and 1 + [3(32 - 3X) + 1](-1A) = 0. 

The first leads to the equation 3(32 - 3i) = $q - 27z - 1 with 3 = 2 . No such 
value of 3 will satisfy Lemma 1. The second congruence leads to the equation 
3(32 - Si) = $q + h - 1 with 3 = 2 . If h = 2, there is no value of 3 which 
satisfies Lemma 1, and on ^2, If h > 2, then 33i = q - h + 1 satisfies Lem-
ma 1. Substituting this value in (3), we obtain 3a2 = r - k - 1. Then Pl = 
(q - h + 1) and P2 = (r - k - l)q + q + r with ax = 0, a2 = 1. But when we 
set a3 + 3a3q + 33 3P + q = 0? - /z + 1) , we obtain P3 = 2 + (p - 2k - 1) + 
(/z + 1 ) P + q. Moreover, if we let al = 1, a2 = 2, partitions Px and P2 exist 
but also Ph exists. Thus, there is no n for which on = 2. 

In Table 3 the values for P, q9 k9 and h are all modulo 3. From an inspec-
tion of Table 3 for the cases when max \cn\ ~ 1* w e state 

IkdOKm 41 Let v = (kq ± l)//z, ± < h ± (q - l)/2. In F3qr (x) , |c„| <_ 1 
if and only if one of these conditions holds: (a) k = 0 and h + q = 0 (mod 
3) or (b) h = 0 and k + p E 0 (mod 3). 

Table 3 r = (fo? ± 0/fc, 1 < h < {q - 0/2 

(Values for <?, p, h, k are modulo 3) 

1 — 

I I ! 

in 
5s 

k 

0 

l 

2 

0 

1 

2 

/z 

1 

2 

0 

2 

0 

1 

±1 

+ 

+ 

+ 

-

-

Pi 
Pi 

Pi 

Pi 

P a r t i t i o n s of n 

= 2 + (q - 2/2 + O P 

= 2 + (2fc + 0<7 

= 2 + (2/z + O P 

= 2 + ( r - 2/c + 0<? 

P2 = {r - 2k - l)q + q + r 

P 2 = (2/z - ])r + q + r 

P 2 = (2fe - \)q + q + r 

P2 = (q - 2h - l)r + q+r 

max | c n | 

2 

2 

1 

1 

2 

2 

(continued) 
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Table 3—continued 

CM 

I I I 

I I I 

5 H 

CM 

I I I 

Cr 

I I I 

I I I 

CM 

I I I 

k 

0 

1 

2 

0 

1 

2 

0 

1 

2 

0 

1 

2 

0 

1 

2 

0 

1 

2 

ft 

2 

0 

1 

1 

2 

0 

1 

0 

2 

2 

1 

0 

2 

1 

0 

1 

0 

2 

±1 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

P a r t i t i o n s of n 

Px = (r - 2k + \)q 

Px = (2ft + 1 ) P 

P x = (2fc + \)q 

Px = (q - 2h + 1 ) P 

P 3 = 2 + (4 - 2h + 1 ) r + <? 

P 3 = 2 + (2fc - D<? + <7 

P 3 = 2 + ( r - 2fc - 1 )<? + <? 

P3 = (fc - 0<7 + ? 

P 3 = 1 + (k - 1)^ + q 

P 3 = (r - 2^: - l)q + q 

P 3 = ((7 - 2h + ])r + q 

P 3 = {q - 2ft + O r + q 

P 2 = 2 + ((7 - 2h - l ) r + q + p 

P 2 = 2 + (2k - O q + q + p 

P 2 = 2 + (2fc - 1 ) P + <? + P 

P 2 = 2 + ( P - 2k - 1)<? + <7 + P 

Ph = (p - 2fc + \)q + r 

Ph = (2ft - 1)3?+ r 

P^ = (4 - 2ft - l ) p + p 

Ph = 1 + (ft - 1 ) P + P 

P^ = (ft - 1 ) P + P 

Ph = 2 + (q - 2ft - 1 ) P + P 

P^ = 2 + (p - 2k + l)q+r 

Ph = 2+ (r - 2k + \)q + r 

max \on\ 

2 

1 

2 

1 

2 

2 

1 

2 

2 

2 

2 

1 

1 

2 

2 

2 

1 

2 
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