COEFFICIENTS OF THE CYCLOTOMIC POLYNOMIAL F,,, (x)
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Let F, be the mth cyclotomic polynomial. Bang [1] has shown that for m =
pqr, a product of three odd primes with p < g < r, tlie coefficients of F, (x)
do not exceed p-1 in absolute value. The smallest such m is 105 and the co-
efficient of &’ in F,y is -2. It might be assumed that coefficients 2 and/
or -2 occur in every F3qp+ This is not so. It is the purpose of this paper
to characterize the pairs ¢,r in m=3qr such that no coefficient of absolute
value 2 can occur in Fy,.

1. PRELIMINARIES
e(m)
Let F,(x) = chm". Then for m=3qr, ¢, is determined [1] by the number
n=0
of partitions of n of the form:

n = a + 30g + 3Br + yqr + §,q + §,7», M
0 <ac<3; 0, B, Y, nonnegative integers; §; € {O, l} . If n has no such par-
tition, ¢, = 0. Each partition of » in the form (1) contributes +1 to the
value of ¢, if §, = §,, but -1 if 6, # §,. Because F,(x) is symmetric, we
consider only n < ¢(m)/2=(q-1)(r-1). Forn > (q-1)(r-1), ¢,=c,r, with
n' = ¢(m) -n. We note that for n < (¢-1)(r-1), Y in (1) must be zero.

A permissible partition of »n is therefore one of these four:

Py = a; + 30,9 + 38,7, P, =a, + 30,q + 38, + g + r,

(2)

Py =a, + 30,9 + 38,7 + q, P a, + 30,9 + 3B,r + r.

" Y

Partitions P, and P, will each contribute +1 to ¢,, while P; and P, will each
contribute -1. When n < (¢=1)(r~-1), only one partition for each P,, 7 = 1,
., &4, is possible [1].
Lemma 1: For any B; in (2), 3B; < q - 2 for all q.

Proof: Following Bloom [3] we have 38, < (q-D(r-1) < (g-1L)r. Thus,
38; < g - 1.

Conollarny: 3B; < q - 3 for 2 = 2, 4.

Lemma 2: Either » + ¢ £ 0 (mod 3) or r - g = 0 (mod 3), for all primes q
and r with 3 < g < r.
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Proog: Let g = 2k + 1, » = 2k; + 1. Since 3 divides one and only one of
the numbers 2¢, 2(£+1) when 2¢£+4+1 is a prime, it follows that 3 divides one
and only one of the numbers r + g = 2(k + k; + 1) or r - g = 2(k - k).

2. BOUNDS ON THE COEFFICIENTS

We set 3 < g < r and make repeated use of the expressions:

P, - Py =a, -a; +3(, -a,)g+3B,-BJr+qg+r=0; (3)
P, -Py=a, -az+3(, -a)g+ 3B, -B)r+r-q=0. (4)
Theorem 1: 1In Fa,, (2),
(a) if r - ¢ =0 (mod 3), then -1 L ¢, < 2,
(b) if r+ g = 0 (mod 3), then -2 L ¢, < 1.
Proof of (a): Assume ¢, = -2 for some n, i.e., partitions of n of forms

Py and P, exist. Taking (4), modulo 3, we obtain a, - a3 = 0 (mod 3). But
a < 3, so that a, = a;. Now taking (4), modulo g, we obtain [3(B, - B83) +
1]lr = 0 (mod q). Then 3(B, - B3) + 1 = Bg, for some integer B # 0. Either
3(By - Bs) =Bg-12>qg -1, or 3(Bs - By) = |Blg+12>qg+ 1. But 3B, <q-2
by Lemma 1. Therefore, P; and P, cannot both exist and we have ¢, # -2.

The proof of (b) follows from a similar argument by considering (3), mod-
ulo 3, and then modulo g.

Remark 1: F3,, may have a coefficient of 2 or of -2 but not of both.

Remark 2: 1If g and » are twin primes, ¢, = -2 with P; = 2 + ¢, P, = ».

3. SPECIAL CASES

I+
N

Before taking up the general case, we consider r = kg * 1 and r = kg
We prove a theorem about r = kq * 1.

Theorem 2: Let » = kq + 1. In Fy, (x), |e,| <1 if and only if k = 0 (mod
3).

Proof: To show the sufficiency of the condition, let r = 3hg + 1, with
q =1 (mod 3). Then r - q 20 (mod 3), and ¢, # -2 by Theorem 1. We show
¢, # 2, i.e., there is no »n for which partitions P, and P, can both exist.
Taking (3), modulo 3, we obtain a, - a; = 1 or -2. We note that r =1 (mod
g). Then (3), modulo g, leads to one of the equations:

3(82 - B = Bq -2 or 3(82 = Bl) = BC] +1

with B = 2 (mod 3). Obviously, there is no value of B which satisfies Lemma
1. Hence there is no n, 0 <#n < (¢-1)(r-1), for which partitions P; and P,
both exist. Similarly, with ¢ = 2 (mod 3), it can be shown that there is no
n for which partitions P, and P, can both exist. When r = 3#g -1, r = 2 (mod
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3). If g = 2, the proof leads to the same two equations as above with B
Thus both equations are inconsistent with Lemma 1. If g = 1, the same e
tions appear with B, and B, replaced by B, and B3, respectively, and B
Thus lcn < 1.

The necessity of the condition ¥ = 0 (mod 3) is shown by the counterex-
amples in Table 1. Values of k are given modulo 3. For each »n, other par-
titions are not possible. We illustrate with the first counterexample, r =
kq + 1 with ¥ = 1. The only possible » and ¢ are » = 2 and ¢ = 1 (mod 3).
Note that for n = r, n = 2 (mod 3). Thus in partitions P; or P,, a;=a, = 2.
Then Py, = 2 + 3049 + 3B = r = P, = 2 + 30,9 + 38,7 + ¢ + . 1In neither P,
nor P, is it possible to find nonnegative o and B to satisfy the equations.
Hence, the coefficient of x” in Fy,, is -2.

1.
ua-
2.

a1

Table 1 » = kg + 1

2 Examples
(mod 3) r Partitions of n e, gl r|n
1 kg+ 1|P3=1+(k-1)g+q|P, =2 =20 712929
1 kg - 1|Ps=(k-1)q+gqg P,=1+r -2 5[19]20
kg +1|P, =1+ (k+ 1)g P,=q+r 2| 5| 41|46
2 kg - 1P, = (k + 1)q Pyo=1l+qg+r| 2| 7]|13|21

Theorem 3: Let r = kg * 2. In Fy,, (®), |es| < 1 if and only if k = 0 and
g =1 (mod 3).

The proof follows the method in Theorem 2 and is omitted here. Table 2
gives counterexamples to show the necessity.

Table 2 » = kq * 2

% Examples
(mod 3)| = Partitions of n el gl 2| n
N0 kg +2|Py=2+(qg+ Dr/2 |P, = 14 (g - Nkq/2+q+»| 2| 5]17]53
'go é kq - 2| Py = (q+ )r/2+q [Py = 1+(q - V)kq/2+r |-2|| 5|13 |4k
1 - kg + 2|Py=(k - 1)g+g+2|P, =» -2 || 513737
1 |kq-2|Py=(k=-1)g+q |P,=2+2 -2 | 7|47 k9
2 |kg+2|Pp=(k+1)g+2 |P,=qg+r 2| 7|37 | Lk
2 |kg-2|P, = (k+1) P,=q+mr+2 2| 5]23}30




1978] COEFFICIENTS OF THE CYCLOTOMIC POLYNOMIAL Fy () 305

L. THE GENERAL CASE

More generally, for all primes ¢ and » with 3 < g < r, we have r = (kg +
/h, or » = (kg - D/h, h < (g - 1)/2. If h =1, Theorem 2 applies. There-
fore we set 1 < h. 1In r = (kg * 1)/h, we may consider », ¢, k, %1 as four
independent variables with % dependent. Since r and ¢ each have two possible
values modulo 3 and k has three, there are 24 cases to be examined. We shall
examine one of them. Then we shall present Table 3 showing all 24 cases and
from the table we form a theorem which states conditions on g and r so that
len] <1 in Fygp.

First we take » ¢ =1, kK =0 (mod 3)in » = (kgq-1)/h, 1 < h £ (g-1)/2.
Note that %« = 2. Since » - g =0 (mod 3), ¢ # -2 by Theorem 1. We show
¢, # 2. Taking (3), modulo 3, we find a, - @; = -2 or 1. Then taking (3),
modulo g, we obtain two possible congruences:

-2 + [3(B, - By) + 11(-1/h) =0 and 1 + [3(B, - B;) + 1]1(-1/R) = 0.

The first leads to the equation 3(B, - B;) = Bg - 2A - 1 with B = 2. No such
value of B will satisfy Lemma 1. The second congruence leads to the equation
3(B, = By) = Bg+h - 1with B =2, If # =2, there is no value of B which
satisfies Lemma 1, and ¢, # 2. If h >2, then 38, = ¢ - h + 1 satisfies Lem-
ma 1. Substituting this value in (3), we obtain 30, = » - kK = 1. Then P, =
(g-h+1) and P, = (r - k - 1)g + g + r with a; = 0, a, = 1. But when we
set a; + 30, + 3Br+ g = (g ~-h+ 1), we obtain Py =2+ (r - 2k - 1) +
(h + )r + q. Moreover, if we let a, = 1, a, = 2, partitions P, and P, exist
but also P, exists. Thus, there is no n for which ¢, = 2.

In Table 3 the values for », g, k, and % are all modulo 3. From an inspec-—
tion of Table 3 for the cases when max lcn] = 1, we state

Theorem 4: Let r = (kg + 1)/h, 1 < B < (q - 1)/2. 1In Fa, (@), |ea] <1
if and only if one of these conditions holds: (a) X = 0 and # + ¢ = 0 (mod
3) or (b) =0 and Xk + » = 0 (mod 3).

Table 3 r = (kg £ 1)/, 1 <h < (g - 1)/2

(Values for g, », h, k are modulo 3)

kKlhi+l Partitions of n max | e, |
0| 1| +|Py=2+(qg-2h+ N)r P, =(r -2k - 1)g+qg+r 2
—| 112 +|P; =2+(2k + 1)g Py, = (2h - Nr+qg+r 2
il 2 0 + 1
o
mio|2) - 1
St1jo| =Py =2+ 2k + 1)r P, = (2k - 1)g+q+r 2
21| -|Py =2+ (r - 2k + 1)q P, ={q-2h-Nr+qg+r 2

(continued)
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Table 3—continued
K|k |1 Partitions of n max | ey |
0 +|P, = (r - 2k + 1)q P,=2+(g - 2n - Nr+qg+r 2
o~ 1 0 + 1
”; 201 | +|P, = (2n+ 1)r P, =2+ (2k - 1)g+q+r 2
m|{O]| 1] - 1
S -, = (2k + 1)gq P, =2+ (2k - N)r+qg+r 2
2|0 -|P,=(g-2n+1)r P,=2+(r -2k - 1)g+q+r 2
o1+ 1
o~
wl1]o Py=2+(q-2n+ Nr+q|P, = (r-2k+ 1)g+r 2
Sl 22| +|Py=2+(2k - 1)g+gq P, =(2n - Nr+r 2
=lo|2|-|Py,=2+(r-2k=-1)g+q|P, = (g - 2k - )r+r 2
11
o 11| -|Py=(k-1)g+q P, =1+(h - Nr+r 2
210 - 1
o2 + 1
" 1 Py=1+(k - 1)g+q y = (- Nr+r 2
120 +|P, (r—Zk-l)q+q Pq=2+(q-2h-1)r+r 2
w01 -|Py=1(qg-2n+ Nr+gq P, =2+(r -2k + 1)g+r 2
1
o1 - 1
2 -|Py= (g -2n+ Nr+g P,=2+(r -2k + 1)g+xr 2
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