19781 THE FiBONACCI SEQUENCE MODULO ¥ Lo7

by Lemma 4, D = 1. If p = 21 or 29 (mod 40), then 0|p - 1 implies that 0 Z 0
(mod 8). By Lemma 4, D # 2. This concludes the proof of the second part of
the theorem. By Theorems 2 and 6, a formula for D(n) is obtained:

[D2")p2" ), DI )eEN), ...y DEMP@E™)]
[p€27), p(P1),s vvvs p(BI™)]
For an odd prime p, we have, by Theorems 3 and 7,

op)/e(p?) = p* o) /p* tp(p) = pt-*o(p)/p(p).

Since this value is either 1, 2, or 4, it must be the case that ¢ = ¢, and
hence, D(p?¥) = D(p). The formula above reduces to

[DQ27)p@™), DB o® ), -.vr DB )om )]

D(n) =

D(n) =

[p(2™), p(py)s «ovs 0(p,)]

A routine checking of all cases—using Lemma 4, the formula above, and the
formulas for o(2%) and p(27)—verifies the remainder of Theorem 8. O
Theorem 9 is now an immediate consequence of Theorems 4 and 8.

L. RELATED TOPICS

Several questions remain open. We would like to know, for example, whe-
ther a formula for D(p) is poa51ble when p = 1 or 9 (mod 20)

One may also ask whether G(p ) # o(p) for all odd primes p. If so, our
formulas of Theorems 3 and 7 would be simplified so that s = ¢ = 1. This
question has been asked earlier by D. D. Wall [6]. Penny & Pomerance claim
to have verified it for p < 177,409 [4]. Using Theorem 1, the conjecture is
equivalent to gP'=1 4 1 in Z*[/_] A similar equality 2p" =1 in Z3}: has
been extensively studied, and the first counterexample is p = 1093. The an-
alogy between the two makes the existence of a large counterexample to G(p )
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1. Z. Borevich & I. Shafarevich, Number Theory (New York: Academic Press,

1966).

S. Lang, Algebra (Reading, Mass.: Addison-Wesley, 1965).

3. W. LeVeque, Topics in Number Theory, I (Reading, Mass.: Addison-Wesley,
1956).

N
.

4. Penny & Pomerance, American Math. Monthly, Vol. 83 (1976), pp. 742-743.
5. N. Vorob'ev, Fibonacci Numbers (New York: Blaisdell, 1961).
6. D. D. Wall, 4dmerican Math. Monthly, Vol. 67 (1960), pp. 525-532,

it

CONGRUENT PRIMES OF FORM (87 + 1)

J. A. H. HUNTER

An 1nteger e is congruent if there are known integral solutions for the
system X% - ey? = 72 , and X% + e¥? = 7%, At present, we can be sure that a
particular number is congruent only if corresponding X, Y values have been
determined.
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However, it has been stated and accepted that integers of certain forms
cannot be congruent. Proofs exist for most of those excluding conditions, but
not for all-—mno counterexamples having been discovered as regards the latter.
For example, a prime of form (82 + 3), or the product of two such primes,
cannot be congruent.

L. Bastien and others have stated that a prime of form (8r + 1), repre-
sentable as (k2-+t2) cannot be congruent if (k + t) is not a quadratic resi-
due of that prime. But no proof of this has been known to exist in the lit-
erature.

The necessary proof will be developed in this paper.

We first show that the situations regarding primes of form (8» + 1), and
those of form (8r + 5), are not the same. For this we use the Collins analy-
sis method.

It is well known that every congruent number must be of form uv(uz-vz)/
gz. Then, if e be a prime of form (8» + 5) or (8r + 1), for congruent e we
must have solutions to wv(u® - v?) = egz: from which it follows that one of
u, v, (u-7v), (u+ v) must be eaz, say, and the other three must all be
squares.

Consider each of the four possibilities.

1) u+v==ea®, u-v="~0% u-= e?, v = d°.
Then, b? - 262 = -ea?:
possible with e = 8» + 1; impossible with e = 8» + 5.
Similarly, b? + 2d? = ea?:
possible with e = 8» + 1; impossible with e
Also, ¢® + d? = ea®, and ¢? - d% = b%:
both possible for e = 8» + 1 and for e = 8» + 5.

8r + 5.

Hence, this case (1) applies to e = 8» + 1, but not to e = 8»r + 5.
@2) u-v==ea®, u+v="0% u=c?, v=4d>.

Then, b? - 2¢% = -ea?:

possible with ¢ = 8» + 1; impossible with e = 8» + 5.
Similarly, b? - 2d% = ea?:
possible with ¢ = 8» + 1; impossible with e = 8r + 5.

Also, ¢® - d? = ea®, and ¢? + d% = b2:
both possible for e = 8 + 1 and for e = 8» + 5.

Hence, this case (2) applies to e = 8» + 1, but not to e = 8r + 5.

B)u=ea®, u+v=>0% u-v=c?, v=4d>.
2

Then, b? + ¢? = 2ea?, b? - ¢? = 2d°%,b% - d% = ea?, and ¢®> + d* =ea’:
All possible for both e = 8 + 1 and e¢ = 8» + 5.

Hence, this case (3) applies to both.
4 v=ed?®, u+v=">0% u-v=2c? u=d4d2.

Then, b? - ¢? = 2ed?, b% + % = 24%,b? - d?
A1l possible for both ¢ = 82 + 1 and e = 8»

ea’, and d? - ¢? =ed?:

5.

1]

+

Hence, this case (4) applies to both.

So, for e = 8r + 5, we have possible:
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But,

(3)
(8r

Case (3) 2% + y* = 2ezz} Case (4) x? + y® =232 }
x® - y? = 20° x? - y? = 2ew?
for e = 8r» + 1, we have possible:
Case (1) x® + y® = ezz} Case (2) +
2? = y? = 2

@+ y? = 52 }
22— 2 = o?
y® = ew
Case (3) x® + y? 2922} Case (4) x? + y? = 222 }
z? -y 2w? z? - y? = 2ew?

We now show that each of the subsidiary-equation systems (1), (2), and
will provide a solution for the system (4) for any congruent number prime
+ 1).

From (1) to (4):

Say x® + y® = ez?, x® - y® = w?, and 4% + B® = 202, A% - B? = 2¢D%.

N
on

Setting 4 = z* + 2x%y? - y*, B = " - 2z%® - y", we have
4% + B® = 2(x" + y")?, 4% - B? = 2¢ -« (2xyaw)?.
As an example,

52 4+ 4% = 41 - 12 11692 + 4312
52 - 4% = 3%

2 - 8812 }
11692 — 4312 = 2 « 41 - 120°
From (2) to (4):
Say x® + y? = 2%, % - y® = ew®, and 4% + B? = 2¢%, 4% - B? = 2eD%.
Setting 4 = x* + 2x%y? - y*, B = x* - 22%y® - y | we have

A% + B® = 2(x" + y")?, 4% - B?

]

2e + (2xyzw)?.
As an example,

212 + 20% = 292 } 3872812 + 3183192
212 - 20% = 41 - 1% 3872812 - 3183192

it u

2+ 354481° }

2+ 41 ¢ 243607

From (3) to (4):

Say x® + y? = 2ez?, x® - y? = w?, and 4% + B = 2¢%, 4% - B? = 2eD°.

Setting 4 = (ez®)? + 2ez%w? - w", B = (ez?)?® - 2ez%w® - w", we have
A% + B® = 2[(ez®)? + w*]?, A* - B* = 2e + (2xyzw)?.

As an example,

332 + 312 = 82 - 52} 11777292 + 9153292
332 - 312 = 2 . 82 11777292 - 9153292

]
it

2« 10547212 }
2 o 41 - 818402

We may also consider the system (4) itself:

Say x? + y2 = 232, x% - yz = 2ew?.

From the first of the two equations we require

2 2

z=u?+ 2uw - v,y =u® - 2uw - v*, 3 =u? + v2.

Then z® - y? = (2u® - 20%)4uv,

whence, 4uv(u?® - v?) = ew?, which we know has solutions if ¢ is a congru-
ent number.
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Now, having shown that each of the four possible systems of subsidiary
equasions, for prime ¢ of form 8» + 1, must have solutions if e is to be con-
gruent—and that system (4) is linked to each of the other three systems—a
proof that any one of the four systems will not have solutions for any parti-
cular value of e must be proof that no other of the four systems can have
solutions. Accordingly, we now show that e cannot be congruent if e = k% +
tz, and (k + t) is not a quadratic residue of e. For this we investigate the
subsidiary-equation system (1).

Say e is a prime of form (8r + 1), represented uniquely as k> + #2.

We have the system: x° + y2 = ez?, z° - yz = w?. Thence,

(kz)? = 2% + y? - (tz2)?,

with solution

kz = a® + b? - 02} z=a? - b + cz}
ee. (M)
tz = 2ac y = 2ab
hence,
2kae = ta® + th* - te?,
making
t?¢® + 2ktac - t2a? = b2
whence,
(te + ka)? - (ka)? - (ta)? = (tb)?
so

(te + ka)? - ea? = (th)?,

with solution

ka 2kmm th = m? - en?

Without loss of generality, that becomes

1l

te + ka = m®> + enz} te = m? - 2kmn + enz}

- en?, ¢ = m? - 2kmm + en®.

a = 2tm, b = m*
Substituting in (M), and omitting the common term 4mn, we get

t(m? - enz),

i

x = km* - 2emn + ken?, y
whence
(k + tYym* - 2emm + (k - t)?

x + Yy
and
(k ~ e)ym? - 2emn + (k + £)2.

-y
Now, since we have 2 + yz = ¢z?, with e an odd prime, x and y cannot be of

same parity. Hence, each of (x + y) and (x - y) must be a square.
So, say, x +y = pz. Then,

[(k + t)m - en]? =2e(tn)? = (k + t)p?,

which is possible only if (k + ¢) is a quadratic residue of e.

That completes the proof that a prime of form (8» 4+ 1), uniquely repre-
sented as (k® + t2), cannot be congruent if (k + t) is a quadratic nonresidue
of e.
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SOME CLASSES OF FIBONACCI SUMS

LEONARD CARLITZ
Duke University, Durham, North Carolina 27706

1. INTRODUCTION
Layman [3] recalled the formulas [2]

(1.1) F,, = Z (Z)Fk

k=0

(1.2) 2, =Y (%)7s
k=0

(1.3) 3'F, = Z <Z)Fuk,
k=0

where, as usual, the F, are the Fibonacci numbers defined by

Fy=0, F,=1, F ., =F, +F _| (n>1).

As Layman remarks, the three identities suggest the possibility of a general
formula of which these are special instances. Several new sums are given in
[2]. Many additional sums occur in [1].

Layman does not obtain a satisfactory generalization; however, he does
obtain a sequence of sums that include (1.1), (1.2), and (1.3). In particu-
lar, the following elegant formulas are proved:

(1.4) 5"y = i:(’;)z”“kmk,
k=0
(1.5) 8"F,, = i(2)3”‘kF6k,
k=0
(1.6) Fao = (1" (7)) -2 Fays
k=0
(1.7) 5"F,, = (-1)”2(2)(-2)@5,{.

k=0

He notes also that each of the sums he obtains remains valid when F, is re-
placed by L, where the L, are the Lucas numbers defined by

Ly=2,L,=1,L,,, =L, +L,_, (u>1).



