A SIMPLE CONTINUED FRACTION REPRESENTS A MEDIANT NEST OF INTERVALS

If
$$p_k \ge 73$$
, then, as in the last paragraph of the proof of (i), we have

$$\sum_{i=1}^{t} \frac{1}{p_i} < \log 2 - \log\left(1 + \frac{1}{5} + \frac{1}{5^2}\right) - \log\left(1 + \frac{1}{31} + \frac{1}{31^2} + \frac{1}{31^3} + \frac{1}{31^4}\right) + \frac{1}{5} + \frac{1}{31} + \frac{1}{2 \cdot 73^2} < b.$$

Finally, suppose $\alpha_1 \geq 4$. Then $p_k \geq 13$ and, as in the preceding paragraph, $\sum_{i=1}^{t} \frac{1}{p_i} < \log 2 - \log \left(1 + \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \frac{1}{5^4}\right) + \frac{1}{5} + \frac{1}{2 \cdot 13^2} < b.$

This completes the proof of (ii).

I am grateful to Professor H. Halberstam for suggesting a simplification of this work through more explicit use of the inequality (4).

REFERENCES

- 1. M. Buxton & S. Elmore, "An Extension of Lower Bounds for Odd Perfect Numbers," Notices Amer. Math. Soc., Vol. 23 (1976), p. A-55.
- 2. D. B. Gillies, "Three New Mersenne Primes and a Statistical Theory," Math. Comp., Vol. 18 (1964), pp. 93-97.
- Guiness Book of Records, 22nd ed., 1975, p. 81.
 P. Hagis, Jr., "Every Odd Perfect Number Has at Least Eight Prime Factors," Notices Amer. Math. Soc., Vol. 22 (1975), p. A-60.
- D. Suryanarayana, "On Odd Perfect Numbers II," Proc. Amer. Math. Soc., Vol. 14 (1963), pp. 896-904.
- 6. D. Suryanarayana & P. Hagis, Jr., "A Theorem Concerning Odd Perfect Numbers," The Fibonacci Quarterly, Vol. 8, No. 3 (1970), pp. 337-346, 374.

A SIMPLE CONTINUED FRACTION REPRESENTS A MEDIANT NEST OF INTERVALS

IRVING ADLER

North Bennington, VT 05257

1. While working on some mathematical aspects of the botanical problem of phyllotaxis, I came upon a property of simple continued fractions that is simple, pretty, useful, and easy to prove, but seems to have been overlooked in the literature. I present it here in the hope that it will be of interest to people who have occasion to teach continued fractions. The property is stated below as a theorem after some necessary terms are defined.

2. Terminology: For any positive integer n, let n/0 represent ∞ . Let us designate as a "fraction" any positive rational number, or 0, or ∞ , in the form a/b, where a and b are nonnegative integers, and either a or b is not zero. We say the fraction is in lowest terms if (a, b) = 1. Thus, 0 in lowest terms is 0/1, and ∞ in lowest terms is 1/0.

If inequality of fractions is defined in the usual way, that is

a/b < c/d if ad < bc,

it follows that $x < \infty$ for x = 0 or any positive rational number.

1978]

A SIMPLE CONTINUED FRACTION REPRESENTS A MEDIANT NEST OF INTERVALS

3. The Mediant: If a/b and c/d are fractions in lowest terms, and a/b < c/d, the mediant between a/b and c/d is defined as (a + c)/(b + d). Note that a/b < (a + c)/(b + d) < c/d.

Examples—The mediant between 1/2 and 1/3 is 2/5. If *n* is a nonnegative integer, the mediant between *n* and ∞ is n + 1. If *n* is a nonnegative integer and *m* is a positive integer, the mediant between *n* and n+1/m is n+1/(m+1).

4. A Mediant Nest: A mediant nest is a nest of closed intervals $I_0, I_1, \ldots, I_n, \ldots$ defined inductively as follows:

$$I_0 = [0, \infty].$$

For $n \ge 0$, if $I_n = [r, s]$, then $I_{n+1} =$ either [r, m] or [m, s], where m is the mediant between r and s.

It is easily shown that if at least one I_n for $n \ge 1$ has for form [r, m], then the length of I_n approaches 0 as $n \to \infty$, so that such a mediant nest is truly a nest of intervals, and it determines a unique number x that is contained in every interval of the nest. For the case where every I_n for $n \ge 1$ has the form [m, s], let us say that the nest determines and "contains" the number ∞ . Mediant nests are obviously related to Farey sequences.

5. Long Notation for a Mediant Nest: A mediant nest and the number it determines can be represented by a sequence of bits $b_1b_2b_3...b_i...$, where, for i > 0, if $I_{i-1} = [r, s]$ and m is the mediant between r and s, $b_i = 0$ if $I_i = [r, m]$, and $b_i = 1$ if $I_i = [m, s]$.

Examples $-\dot{0} = 0$; $\dot{1} = \infty$; $\dot{10} = \tau$, the golden section; where each of these three examples is periodic, and the recurrent bits are indicated by the dots above them.

6. Abbreviated Notation for a Mediant Nest: The sequence of bits representing a mediant nest is a sequence of clusters of ones and zeros,

$$b_1b_2b_3 \dots b_i \dots = 1 \dots 10 \dots 01 \dots 1 \dots$$

where the a_i indicate the number of bits in each cluster; $0 \le a_1 \le \infty$; $0 < a \le \infty$ for n > 1; and the sequence (a_i) terminates with a_n if $a_n = \infty$. As an abbreviated notation for a mediant nest and the number x that it determines we shall write $x = (a_1, a_2, \ldots)$. Then $a_1 \le x < a_1 + 1$. The sequence (a_i) terminates if and only if x is rational or ∞ . Every positive rational number is represented by exactly two terminating sequences (a_i) .

Examples $-(\infty) = 1 = \infty$; $(0, \infty) = 0 = 0$; $(0, 2, \infty) = 001 = \frac{1}{2}$; $(0, 1, 1, \infty) = 010 = \frac{1}{2}$. In general, if $x = (a_1, \ldots, a_{n-1}, a_n, \infty)$ where $a_n > 1$, then $x = (a_1, \ldots, a_{n-1}, a_n - 1, 1, \infty)$, and vice versa.

7. Theorem: If $x = (a_1, a_2, \ldots, a_n, \ldots)$, then $x = a_1 + 1/a_2 + \cdots + 1/a_n + \cdots$ and conversely. If $x = (a_1, \ldots, a_n, \infty)$, then $x = a_1 + 1/a_2 + \cdots + 1/a_n$ and conversely.

Proof of the Theorem:

I. The nonterminating case, $x = (a_1, a_2, \ldots, a_i, \ldots)$. Thus, x is irrational. Let p_i/q_i , for $i \ge 1$, be the principal convergents of $a_1 + 1/a_2 + \ldots$. Then a straightforward proof by induction establishes that for all even $i \ge 2$,

 $I_{a_{1}} + \dots + a_{i} = [p_{i-1}/q_{i-1}, p_{i}/q_{i}],$

A SIMPLE CONTINUED FRACTION REPRESENTS A MEDIANT NEST OF INTERVALS

and for all odd $i \ge 1$,

 $I_{a_1} + \dots + a_i = \left[p_i / q_i, p_{i-1} / q_{i-1} \right].$

Consequently, the nest determined by successive pairs of consecutive principal convergents of $a_1 + 1/a_2 + \cdots + 1/a_n + \cdots$ defines the same number as the mediant nest $(a_1, a_2, \ldots, a_n, \ldots)$.

II. The terminating case, $x = (a_1, \ldots, a_n, \infty)$. It follows from I that

$$I_{a_1+\dots+a_{n+1}} = [p_n/q_n, p_{n+1}/q_{n+1}] \text{ or } [p_{n+1}/q_{n+1}, p_n/q_n],$$

where Since

$$p_{n+1}/q_{n+1} = (p_{n-1} + a_{n+1}p_n)/(q_{n-1} + a_{n+1}q_n).$$

$$\lim_{a_{n+1} \to \infty} p_{n+1}/q_{n+1} = p_n/q_n,$$

it follows that

$$x = \lim_{a_{1} \to \infty} I_{a_{1}} + \dots + a_{n+1} = p_{n}/q_{n} = a_{1} + 1/a_{2} + \dots + 1/a_{n}.$$

III. The "conversely" in the theorem follows from the fact that the mapping of the set of mediant nests into the set of simple continued fractions established in I and II is one-to-one and onto.

Example—The mediant nest $(0, 2, 3, \infty)$ and the continued fraction 0 + 1/2 + 1/3 represent the same number. Verification:

a. (0, 2, 3, ∞) is the abbreviated notation for the sequence of bits
 001110.

The intervals I_n defined by this sequence of bits are:

Bit	Interval	Mediant between Endpoints of Interval
	$I_0 = [0/1, 1/0]$	(0 + 1)/(1 + 0) = 1/1
0	$I_1 = [0/1, 1/1]$	(0 + 1)/(1 + 1) = 1/2
0	$I_2 = [0/1, 1/2]$	(0 + 1)/(1 + 2) = 1/3
1	$I_3 = [1/3, 1/2]$	(1 + 1)/(3 + 2) = 2/5
1	$I_{4} = [2/5, 1/2]$	(2 + 1)/(5 + 2) = 3/7
1	$I_5 = [3/7, 1/2]$	(3 + 1)/(7 + 2) = 4/9
0	$I_6 = [3/7, 4/9]$	(3 + 4)/(7 + 9) = 7/16
0	$I_n = [3/7, m_{n-1}]$	$n \ge 6$, m_{n-1} = the mediant between the endpoints of I_{n-1} .

Since $\lim_{n \to \infty} m_{n-1} = 3/7$, the number defined by this mediant nest is 3/7.

b. The continued fraction

$$0 + \frac{1}{2 + \frac{1}{3}} = 3/7.$$

529

1978]