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If p >: 73, then, as in the last paragraph of the proof of (i), we h ave 
t 

Finally, suppose 04 >. 4. Then pk >_ 13 and, as in the preceding paragraph, 

S i < l o g 2 - l o g ( 1 + i + ^ + ^ + ^ ) + i + rri?< &-
This completes the proof of (ii). 

I am grateful to Professor H. Halberstam for suggesting a simplification 
of this work through more explicit use of the inequality (4). 
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A SIMPLE CONTINUED FRACTION REPRESENTS 
A MEDIANT NEST OF INTERVALS 

IRVING ADLER 
North Bennington, VT 05257 

1. While working on some mathematical aspects of the botanical problem 
of phyllotaxis, I came upon a property of simple continued fractions that is 
simple, pretty, useful, and easy to prove, but seems to have been overlooked 
in the literature. I present it here in the hope that it will be of interest 
to people who have occasion to teach continued fractions. The property is 
stated below as a theorem after some necessary terms are defined. 

2. TeAmZnoZogy: For any positive integer n, let n/0 represent °°. Let 
us designate as a "fraction" any positive rational number, or 0, or °°, in the 
form alb, where a and b are nonnegative integers, and either a or b is not 
zero. We say the fraction is in lowest terms if (a, b) = 1. Thus, 0 in low-
est terms is 0/1, and °°  in lowest terms is 1/0., 

If inequality of fractions is defined in the usual way, that is 

alb < eld if ad < be, 

it follows that x < °°  for x = 0 or any positive rational number. 
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3. Tfie M&cLiant: If a/b and c/d are fractions in lowest terms, and a/b 
< c/d, the mediant between a/b and c/d is defined as (a + c) / (b + d) . Note 
that a/b < {a + c)/(b + d) < c/d. 

ExamptoJs—The mediant between 1/2 and 1/3 is 2/5. If n is a nonnegative 
integer, the mediant between n and °°  is n + 1. If n is a nonnegative integer 
and m is a positive integer, the mediant between n and n + l/m is n +1/(777 + 1). 

4. A Mediant N&>t: A mediant nest is a nest of closed intervals I0,Il9 
..., Tn, ... defined inductively as follows: 

^o = [0, "J. 

For n >_ 0, if In = [r, s] , then .Tn + 1 = either [r, m] or [m, s] , where 777 is the 
mediant between v and s. 

It is easily shown that: if at least one In for n >_ 1 has for form [r,m], 
then the length of Jn approaches 0 as n -*• °°, so that such a mediant nest is 
truly a nest of intervals, and it determines a unique number x that is con-
tained in every interval of the nest. For the case where every In for n >_ 1 
has the form [m, s] , let us say that the nest determines and "contains" the 
number °°. Mediant nests are obviously related to Farey sequences. 

5. Long Notation ^OH. a Mediant N&>t: A mediant nest and the number it 
determines can be represented by a sequence of bits b1b2b3 ...b^ ... , where, 
for £ > 0, if Ii^i = [P, s] and 77? is the mediant between r and s, bi = 0 if 
Ii = [P, m] , and bi = 1 if _Z\- = [777, s] . 

ExampZ&> — 0 = 0; 1 = °°; 10 = T, the golden section; where each of these 
three examples is periodic, and the recurrent bits are indicated by the dots 
above them. 

6. kbbfizvtat&d Notation ^OK. a Mediant N&6t: The sequence of bits repre-
senting a mediant nest is a sequence of clusters of ones and zeros, 

b1b2b3 . . . bi . . . = 1 ... 10 ... 01 ... 1 .. . 

where the a^ indicate the number of bits in each cluster; 0 ^ a 1 ^ . o o ; 0 < a 
<_ °°  for n > 1; and the sequence (at) terminates with an if ccn = °°. As an ab-
breviated notation for a mediant nest and the number x that it determines we 
shall write x = (a19a29 . . . ) • Then a 1 < _ x < a 1 + l. The sequence (a^) ter-
minates if and only if x is rational or °°. Every positive rational number is 
represented by exactly two terminating sequences (at). 

Example—(™) = i = 00; (o, 00) = 6 = 0; (0, 2, «>) = 00I = % ; (0, 1, 1, <») = 
010 = \ . In general, if x = (a2 , . . . , an_ l9 an, °°) where an > I, then x = (a\, 
. . . , an_i, an - 1, 1, °°) , and vice versa. 

7. ThdOKom: If x = (a1? a2, . . . , an, . . .) , then x = a1 + ±/a2 + • • • +l/an 
+ • • • and conversely. If x = (a1 , . . . , an , 00) 9 then x = aY + l/a2 + • • • + l/an 
and conversely. 

P/LOO^ 0^ the. Tko.on.zmi 

I. The nonterminating case, # = (a1, a2, ..., a^, . . . ) . Thus, x is irra-
tional. Let p^/q^9 for £ >_ 1, be the principal convergents of a2 + l/a2 + 
... . Then a straightforward proof by induction establishes that for all 
even £ _> 2, 
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and for all odd £ _> 1, 

J«x + --'+^ = [Pi/Rt> Pi-i/Vi-i]-
Consequently, the nest determined by successive pairs of consecutive princi-
pal convergents of al + l/a2 + • • • + l/an + • • • defines the same number as the 
mediant nest (ax, a2, . . . , an, ... ). 

II. The terminating case, x = (ax, ...,an, °°) . It follows from I that 

Ia1 + -..+an+1 = [pn/qn, Pn + 1/qn + l] o r [ P n + l / ^ n + 1* P» / ? » ] > 
where 

Pn + 1/qn + 1 = (pn_! + an + lPn)/(qn_1 + an + 1qn). 
Since 

it follows that 

x = ^lim^ Jai + ... + an+1 = pn/qn = a1 + l/a2 + ••• + l/an. 

III. The "conversely" in the theorem follows from the fact that the map-
ping of the set of mediant nests into the set of simple continued fractions 
established in I and II is one-to-one and onto. 

Examptz—The mediant nest (0, 2, 3, °°) and the continued fraction 0 + 1/2 
+ 1/3 represent the same number. Verification: 

a. (0,2,3, °°) is the abbreviated notation for the sequence of bits 

001110. 

The intervals In defined by this sequence of bits are: 

Mediant between Endpoints of Interval 

(0 + 1)/(1 + 0) = 1/1 

(0 + 1)/(1 + 1) = 1/2 

(0 + 1)/(1 + 2) = 1/3 

(1 + l)/(3 + 2) = 2/5 

(2 + l)/(5 + 2) = 3/7 

(3 + l)/(7 + 2) = 4/9 

(3 + 4)/(7 + 9) = 7/16 

0 In = [3/7, mn-i] n >. 6, mn.\ = the mediant between the 
endpoints of Xn_i-

Since lim rnn_1 = 3/7, the number defined by this mediant nest is 3/7. 
n -»- °°  

b. The continued fraction 

0 + ^ - = 3/7. 
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= [0/1, 1/0] 

= [0/1, 1/1] 

= [0/1, 1/2] 

= [1/3, 1/2] 

= [2/5, 1/2] 

= [3/7, 1/2] 

= [3/7, 4/9] 


