If $p_{k} \geq 73$, then, as in the last paragraph of the proof of (i), we have

$$
\begin{aligned}
\sum_{i=1}^{t} \frac{1}{p_{i}}<\log 2-\log \left(1+\frac{1}{5}+\frac{1}{5^{2}}\right) & -\log \left(1+\frac{1}{31}+\frac{1}{31^{2}}+\frac{1}{31^{3}}+\frac{1}{31^{4}}\right) \\
& +\frac{1}{5}+\frac{1}{31}+\frac{1}{2 \cdot 73^{2}}<b
\end{aligned}
$$

Finally, suppose $\alpha_{1} \geq 4$. Then $p_{k} \geq 13$ and, as in the preceding paragraph,

$$
\sum_{i=1}^{t} \frac{1}{p_{i}}<\log 2-\log \left(1+\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}}+\frac{1}{5^{4}}\right)+\frac{1}{5}+\frac{1}{2 \cdot 13^{2}}<b
$$

This completes the proof of (ii).
I am grateful to Professor H. Halberstam for suggesting a simplification of this work through more explicit use of the inequality (4).

REFERENCES

1. M. Buxton \& S.E1more, "An Extension of Lower Bounds for Odd Perfect Numbers," Notices Amer. Math. Soc., Vo1. 23 (1976), p. A-55.
2. D. B. Gillies, "Three New Mersenne Primes and a Statistical Theory," Math. Comp., Vol. 18 (1964), pp. 93-97.
3. Guiness Book of Records, 22nd ed., 1975, p. 81.
4. P. Hagis, Jr., "Every Odd Perfect Number Has at Least Eight Prime Factors," Notices Amer. Math. Soc., Vol. 22 (1975), p. A-60.
5. D. Suryanarayana, "On Odd Perfect Numbers II," Proc. Amer. Math. Soc., Vol. 14 (1963), pp. 896-904.
6. D. Suryanarayana \& P. Hagis, Jr., "A Theorem Concerning Odd Perfect Numbers," The Fibonacci Quarterly, Vo1. 8, No. 3 (1970), pp. 337-346, 374.

A SIMPLE CONTINUED FRACTION REPRESENTS
 A MEDIANT NEST OF INTERVALS
 IRVING ADLER
 North Bennington, VT 05257

1. While working on some mathematical aspects of the botanical problem of phyllotaxis, I came upon a property of simple continued fractions that is simple, pretty, useful, and easy to prove, but seems to have been overlooked in the literature. I present it here in the hope that it will be of interest to people who have occasion to teach continued fractions. The property is stated below as a theorem after some necessary terms are defined.
2. Terminology: For any positive integer n, let $n / 0$ represent ∞. Let us designate as a "fraction" any positive rational number, or 0 , or ∞, in the form a / b, where a and b are nonnegative integers, and either a or b is not zero. We say the fraction is in lowest terms if $(a, b)=1$. Thus, 0 in lowest terms is $0 / 1$, and ∞ in lowest terms is $1 / 0$.

If inequality of fractions is defined in the usual way, that is

$$
a / b<c / d \text { if } a d<b c
$$

it follows that $x<\infty$ for $x=0$ or any positive rational number.
3. The Mediant: If α / b and c / d are fractions in lowest terms, and α / b $<c / d$, the mediant between α / b and c / d is defined as $(a+c) /(b+d)$. Note that $a / b<(a+c) /(b+d)<c / d$.

Examples-The mediant between $1 / 2$ and $1 / 3$ is $2 / 5$. If n is a nonnegative integer, the mediant between n and ∞ is $n+1$. If n is a nonnegative integer and m is a positive integer, the mediant between n and $n+1 / m$ is $n+1 /(m+1)$.
4. A Mediant Nest: A mediant nest is a nest of closed intervals I_{0}, I_{1}, \ldots, I_{n}, \ldots defined inductively as follows:

$$
I_{0}=[0, \infty]
$$

For $n \geq 0$, if $I_{n}=[r, s]$, then $I_{n+1}=$ either $[r, m]$ or $[m, s]$, where m is the mediant between r and s.

It is easily shown that if at least one I_{n} for $n \geq 1$ has for form $[r, m]$, then the length of I_{n} approaches 0 as $n \rightarrow \infty$, so that such a mediant nest is truly a nest of intervals, and it determines a unique number x that is contained in every interval of the nest. For the case where every I_{n} for $n \geq 1$ has the form $[m, s]$, let us say that the nest determines and "contains" the number ${ }^{\infty}$. Mediant nests are obviously related to Farey sequences.
5. Long Notation for a Mediant Nest: A mediant nest and the number it determines can be represented by a sequence of bits $b_{1} b_{2} b_{3} \ldots b_{i} \ldots$, where, for $i>0$, if $I_{i-1}=[r, s]$ and m is the mediant between r and $s, b_{i}=0$ if $I_{i}=[r, m]$, and $b_{i}=1$ if $I_{i}=[m, s]$.

Examples- $\dot{0}=0 ; \dot{1}=\infty ; \dot{1} \dot{O}=\tau$, the golden section; where each of these three examples is periodic, and the recurrent bits are indicated by the dots above them.
6. Abbreviated Notation for a Mediant Nest: The sequence of bits representing a mediant nest is a sequence of clusters of ones and zeros,

$$
b_{1} b_{2} b_{3} \ldots b_{i} \ldots=\overbrace{1 \ldots}^{\alpha_{1}} 1 \overbrace{\ldots}^{a_{2}} 0 \overbrace{1}^{a_{3}} 1 \ldots
$$

where the α_{i} indicate the number of bits in each cluster; $0 \leq \alpha_{1} \leq \infty ; 0<a$ $\leq \infty$ for $n>1$; and the sequence $\left(\alpha_{i}\right)$ terminates with α_{n} if $\alpha_{n}=\infty$. As an abbreviated notation for a mediant nest and the number x that it determines we shall write $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$. Then $\alpha_{1} \leq x<\alpha_{1}+1$. The sequence (α_{i}) terminates if and only if x is rational or ∞. Every positive rational number is represented by exactly two terminating sequences $\left(\alpha_{i}\right)$.

Examples- $(\infty)=\dot{1}=\infty ;(0, \infty)=\dot{0}=0 ;(0,2, \infty)=00 \dot{1}=\frac{1}{2} ;(0,1,1, \infty)=$ $010=\frac{1}{2}$. In general, if $x=\left(\alpha_{1}, \ldots, \alpha_{n-1}, a_{n}, \infty\right)$ where $a_{n}>1$, then $x=\left(a_{1}\right.$, $\left.\ldots, a_{n-1}, a_{n}-1,1, \infty\right)$, and vice versa.
7. Theorem: If $x=\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)$, then $x=a_{1}+1 / a_{2}+\cdots+1 / a_{n}$ $+\cdots$ and conversely. If $x=\left(\alpha_{1}, \ldots, \alpha_{n}, \infty\right)$, then $x=\alpha_{1}+1 / \alpha_{2}+\cdots+1 / a_{n}$ and conversely.

Proof of the Theorem:
I. The nonterminating case, $x=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}, \ldots\right)$. Thus, x is irrational. Let p_{i} / q_{i}, for $i \geq 1$, be the principal convergents of $\alpha_{1}+1 / \alpha_{2}+$ Then a straightforward proof by induction establishes that for all even $i \geq 2$,

$$
I_{a_{1}+\cdots+a_{i}}=\left[p_{i-1} / q_{i-1}, p_{i} / q_{i}\right]
$$

and for all odd $i \geq 1$,

$$
I_{a_{1}+\cdots+a_{i}}=\left[p_{i} / q_{i}, p_{i-1} / q_{i-1}\right]
$$

Consequently, the nest determined by successive pairs of consecutive principal convergents of $a_{1}+1 / a_{2}+\cdots+1 / a_{n}+\cdots$ defines the same number as the mediant nest ($a_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots$).
II. The terminating case, $x=\left(\alpha_{1}, \ldots, a_{n}, \infty\right)$. It follows from I that

$$
I_{a_{1}+\cdots+a_{n+1}}=\left[p_{n} / q_{n}, p_{n+1} / q_{n+1}\right] \text { or }\left[p_{n+1} / q_{n+1}, p_{n} / q_{n}\right]
$$

where

$$
p_{n+1} / q_{n+1}=\left(p_{n-1}+a_{n+1} p_{n}\right) /\left(q_{n-1}+a_{n+1} q_{n}\right) .
$$

Since

$$
\lim _{a_{n+1} \rightarrow \infty} p_{n+1} / q_{n+1}=p_{n} / q_{n},
$$

it follows that

$$
x=\lim _{a_{n+1} \rightarrow \infty} I_{a_{1}+\cdots+a_{n+1}}=p_{n} / q_{n}=a_{1}+1 / a_{2}+\cdots+1 / a_{n}
$$

III. The "conversely" in the theorem follows from the fact that the mapping of the set of mediant nests into the set of simple continued fractions established in I and II is one-to-one and onto.

Example-The mediant nest $(0,2,3, \infty)$ and the continued fraction $0+1 / 2$ $+1 / 3$ represent the same number. Verification:
a. $(0,2,3, \infty)$ is the abbreviated notation for the sequence of bits 001110.

The intervals I_{n} defined by this sequence of bits are:
Bit Interval Mediant between Endpoints of Interval

$$
I_{0}=[0 / 1,1 / 0] \quad(0+1) /(1+0)=1 / 1
$$

$0 \quad I_{1}=[0 / 1,1 / 1]$
$(0+1) /(1+1)=1 / 2$
$(0+1) /(1+2)=1 / 3$
$1 \quad I_{3}=[1 / 3,1 / 2]$
$(1+1) /(3+2)=2 / 5$
$I_{4}=[2 / 5,1 / 2]$
$(2+1) /(5+2)=3 / 7$
$1 \quad I_{5}=[3 / 7,1 / 2]$
$(3+1) /(7+2)=4 / 9$
$(3+4) /(7+9)=7 / 16$
\vdots
$0 \quad I_{n}=\left[3 / 7, m_{n-1}\right] \quad n \geq 6, m_{n-1}=$ the mediant between the endpoints of I_{n-1}.
Since $\lim _{n \rightarrow \infty} m_{n-1}=3 / 7$, the number defined by this mediant nest is $3 / 7$.
b. The continued fraction

$$
0+\frac{1}{2+\frac{1}{3}}=3 / 7
$$

* $2=2 \%$

