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H-290 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

Show that: 

( a ) Fk* k + 6r +3 ~ ^k+kr + 2 ~ ( " 1 / ^2r +l^k+8r +h ~ ^k+kr+2' > 

(b) FkFLsr ~ ?U,r = (-Dk + 1F2
Zr(Fk + 8p + 2Fk + l f r ) . 

H-291 Proposed by George Berzsenyi, Lamar University, Beaumont, TX 

Prove that there are infinitely many squares which are differences of 
consecutive cubes. 

H-292 Proposed by F. S. Cater and J. Daily, Portland State University, Port-
land, OR. 

Find all real numbers v £(0,1) for which there exists a one-to-one func-
tion fr mapping (0,1) onto (0,1) such that 

(1) fr and f~ are infinitely many times differentiable on (0,1), and 
(2) the sequence of functions fr, frofP9 frofrofr, fv^fv°fv°fv > •'••• 

converges pointwise to v on (0,1). 

H-293 Proposed by Leonard Carlitz, Duke University, Durham, NC. 

It is known that the Hermite polynomials <Hn(x)\ defined by 

n = 0 n' 
satisfy the relation 

I>» + *(*>S = e2XZ-*2Hk(x - z) (k = 0, 1, 2, . . . ) . 
n = 0 ' 

Show that conversely if a set of polynomials \fn(x)\ satisfy 

<x> Z-4+fc^Jr = E^^Jr4( x - z) (k = 0, 1, 2, . . . ) , 
n = 0 n = 0 

where f0(x) = 1, fx(x) = 2x, then 
fn(x) = Hn(x) (n = 0, 1, 2, . . . ) . 
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H-294 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

Evaluate 

^ 2 r + l ^ 6 r + 3 - ^ 1 0 r + 5 ^lhr+7 ^ I 8r +9 

* hr +2 ^ 1 2 r + 6 ^ 2 OP + 1 0^2 8r + 1 h^ Z Sv + 1 8 

^ 6 r + 3 ^ 1 8 r + 9 ^ 3 6 r + 1 5^4 2 ^ + 2 1^5 4 r + 2 7 

^ 7
8 r + L f -^ 7 2i+P+12^ 7 i+0P + 2 0 ^ 5 6r + 2 8^7 2 r + 3 6 

^ 1 Or + 5^2 Or + 1 5^5 Or +2 5^7 Or + 3 6^5 Or+1+5 

SOLUTIONS 

SYMMETRIC SUM 

H-272 (Correc ted) Proposed by Leonard Carlitz, Duke University, Durham, NC. 

Show t h a t 

EmcAX^rv^A™) Cm(p, (7, r) 

is symmetric in p, q, v. 

Solution by Paul Bruckman, Concord, CA. 

Define 

a) j =0 

Clearly, Cm(p, q, v) = Cm(q, p, r). A moment's reflection reveals that it 
therefore suffices to show that Cm(p, q, r) = Cm(q, p, p). Replacing j by 
/?? - j in (1) and applying Vandermonde? s convolution theorem on the term in-
volving p and q yields: 

".<p-"-')-i;(.̂ )(5)(j)/(;)fc^)«) 
j-o 

m m - J 

k=0 

j = 0 k = 0 
Replacing k by m - k in the last expression yields 

m m 

E0t(A)UKi)(.?oc;')/(j)-
7 = 0 fe = 0 

te last expression yields: 

'.<*•«•'>-E£(.-*)(5)(.?*)(0(*)/(;) 
J = 0 fc = j 

- E U ) ( . ! , ) E ( . - * ) 0 ) ( 5 ) / ( " ) -
However, it is easy to verify that 

(»-,)/(?)-O/rTO-O^'/fT1)-
Therefore, 

777 k 

*.<*.«. w • C)E(?)(.f*)?:w)'(J)(5)/(-r1)-
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Now, formula (7.1) in Combinatorial Identities (H. W. Gould, Morgantown,1972), 
is as follows: 

<« D-u'UK^/cr)/©-
fc-0 

Letting k = J, n = k, % = q, y = m - r •- 1 In (4), we therefore simplify (3) 
as follows: 

*.«.*> = Q|:axA)riT~i)/CT1) 
fr\SLy(P\t 1 \/q+r-m + k\ I IT -m + k\ 

= \m)ls\k)\m-k)\ k ) / \ k ) ; 

k = 0 
once again and replacing k by j y i e l d s : 

m 

<p.,.rt=E(?)(„^-)L-J-)r'r+j')/(™) 3 

= Cm(q, p, p). Q.E.D. 

Also solved by the proposer. 

A RAY OF LUCAS 

H-273 Proposed by W. G. Brady, Slippery Rock State College, Slippery Rock, PA. 

Consider, after Hoggatt and H-257, the array D, indicated below, In which 
^2n+i (n = 0, 1, 2, ...) is written in staggered columns: 

1 
4 1 
11 4 1 
29 11 4 1 
76 29 11 4 1 

i. Show that the row sums are L2n + 2 ~ 2; 
ii. Show that the rising diagonal sums are F2n+3 ~ 1 where L2n+1 is the 

largest element in the sum. 
iii. Show that if the columns are multiplied by 1, 2, 3, ... sequentially to 

the right then the row sums are L2n+3 - {In + 3). 

Solution by A. G. Shannon, The N.S.W. Institute of Technology, Australia. 

In effect we are asked to prove: 
n 

i* 2Ll ^2n-2j +1 = ^2n+2 ~ 2 ; 
J - 0 
[n/2] 

i 1 , 2Ls ^2n-kj + i ~ F2n+3 - i ; 
J - 0 
n 

i i i . ^ (j + l)L2n_2j+1 = L2n + 3 - {In + 3) . 
j - o 

n n / \ n n+1 

( ^ Z^L2^-2J + 1 = I-** \ L 2 n - 2 ( j - 1) " L 2 n - 2 j ) = / ^ L 2 n - 2 ( j - 1 ) " / , L 2 n - 2 ( , i - l ) 
J = 0 j - 0 j = 0 j = l 

= £J2n+2 " ^ O J a s required. 
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[«/2] [n/2] [n/2] [n/2] + l 

( i i ) 2 ^ L2n-Hj + 1 = 2-J {F2n-Hj + 3 " F 2n - 4 j - 1 ) = ^ F2n-kj + 3 ~ X , F2n-kj+3 
J-o j = o ' ^ . Q j-i 

= F2n+3 ~ ̂ i^(25 «) "
 F.1o(29 n + 1) = F2n+3 - 1 

in which 

!

1 if n\m9 

0 if n\m. 
n n n n 

(iii) £ (J + l)L2n_2j,+ 1 - £ SL2n-2i+l = Z)(L2n-2i + 2 - 2) 
i = 0j' = 1 *-0 [from (i)] 

n 
= 2-j\^2n-2i+ 3 ~ -̂ 2n-2i+l ~ ^j 

rc + 1 £=0 
= *YjL2in+i)-n+i - Ll - (L2n + 2 - 2) - 2(n + 1) 

i = Q 

= L2n+, - 2 - 1 - L2n + 2 + 2 - 2(n + 1) 

= L2n+3 - (In + 3 ) , as required. 

Also solved by P. Bruckman,• G. Wulczyn, H. Freitag, B. Prielipp, Dinh The'Hung, 
and the proposer. 

Late Acknowledgments: F. T. Howard solved H-268 and M. Klamkin solved H-270. 

A CORRECTED OLDIE 

H-225 Proposed by G. A. R. Guillotte, Quebec, Canada. 

Let p denote an odd prime and xp + yp = zp for positive integers, x, y, 
and z. Show that 

(A) p < xj(z - x) + y/(z - y), and 

(B) z/2(z - x) < p < y/(z - y). 


