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If O(n) denotes the sum of the positive divisors of a natural number n, 
and o(n) = 2n, then n is said to be perfect. Elementary textbooks give a 
necessary and sufficient condition for an even number to be perfect, and to 
date 24 such numbers, 6, 28, 496, ..., have been found. (The 24th is 

219 9 36 /ol 99 37 _ -, x 

discovered by Bryant Tuckerman in 1971 and reported in the Gu-iness Book of 
Records [3]. The three preceding ones were given by Gillies [2].) 

It is not known whether there are any odd perfect numbers, though many 
necessary conditions for their existence have been established. The most in-
teresting of recent conditions are that such a number must have at least 
eight distinct prime factors (Hagis [4]) and must exceed 100200 (Buxton and 
Elmore [1]). 

Suppose p , . . . , p are the distinct prime factors of an odd perfect num-
ber. In this note we will give a new and simple proof that 

(1) £-±-<log2, 
i = 1 r"z-

a result due to Suryanarayana [5], who also gave upper and lower bounds for 
t 

1 Z 
when either or both of 3 and 5 are included in (p , ...,p }. 

Most of these bounds were improved in a subsequent paper with Hagis [6], 
but no improvement was given for the upper bound in the case when both 3 and 
5 are factors. We will prove here that in that case 

t 
Z ^ < .673634, 

the upper bound in [5] being .6 73770. We will also give a further improvement 
in the upper bound when 5 is a factor and 3 is not; namely, 

V- 1 
> — < .677637, 

the upper bound in [6] being .678036. (These are six-decimal-place approxi-
mations to the bounds obtained.) 

We assume henceforth that n is an odd perfect number. 
An old result, due to Euler, states that we may write 

i = l 
where p , . . . , p are distinct primes and pk E ak = 1 (mod 4) for just one k 
in {l, . .., t) and a{ = 0 (mod 2) when i ^ k. We will assume further that 
p < ... < p , and later will commonly write a(r) for a^ when pi = r. The 
subscript k will always have the significance just given and IIr and Z' will 
denote that i, = k is to be excluded from the product or sum. 
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We w i l l need t h e well-known r e s u l t 

(2) \{pk + l)\n, 

which is easily proved (see [6]). It follows that 

(3) PX ±\ipk + 1 ) . 

We a l s o use t he i n e q u a l i t y 

(4) 1 + x + x2 > expLr + -rx2} , 0 < x <_ -k 

To prove t h i s , n o t e t h a t 

exp(x + ^x2^) - (1 + x + x2) = 1 + x + ~~ + - y L r + —-) + • • • - (1 + x + x2) 

1 2 _, x3 ^ xh , 1 / , x 2 V 

so we wish to prove that 

x , x2 , 1 ( x2\3 , 1 ( x2Y 1 1 

Now, 

and 
f + f U n + Jiiir-09 

i / , * 2 V . i I , *2 X* a; + -7- + r uc + -7- + 3!x2 \ W 4!a;2\ 4 

< ^ ( * + T ) 3 ^ + T)+(* + T ) 2 + 

1 / l 3 \ 3 36 
~ 18 \ 1 2 / 23 < '±2' 

Hence (4) is true. Other and better inequalities of this type can be estab-
lished but the above is sufficient for our present purposes. 

Now we prove (1). Since n is perfect, 
t 

In = o(n) = Y\ (1 + p. + p? + • . . + p*1) 

' - f t K - * •••••£) 
By E u l e r ' s r e s u l t , ak >_ 1 and a^ >_ 2 (i- ^ k) , so 

Pk/ i = i \ Pi P ? / \ Pfc/i.'i VPi 4P; 
by ( 4 ) . Hence, 

l o g 2 > 1°8(1 +t)+5'(t+^) 
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t , t , t 
l- - -5- + y A. + I y'J_ > y _!_ + J^ _ _i_ 
K H ttx Pi 4 & P ? M P , 4Pl

2 2p2 

> 
~ti?i (Pk + D 2 2p£ , 4 l P i 

u s ing ( 3 ) . 
We end w i th t h e 

Th2.OA.2m: ( i ) I f 15 I n , then 

x - l ^ l ^ l ^ l ^ l , , 2950753 
A F T 3 + T + l 3 + 6 l + l o g 2815321 = a ' s a y ' 

( i i ) I f 5 | n and 3 | n , then 

v - 1 ^ 1 ^ 1 ^ 1 ^ , 293105 , 
Z-^7 < I + 31 + 61 + l o g 190861 = 6 ' S a y ' 
£ = l r ^ 

Vh.00^1 The proofs consist of considering a number of cases which are 
mutually exclusive and exhaustive. 

(i) We are given that p, = 3 and p = 5. Suppose first that ax = 2 and 
a2 = 1 (so that we are assuming, until the last paragraph of this proof, that 
k = 2). Since cr(32) = 13, we have 13 \n. 

Suppose 01(13) = 2, so that, since a(132) = 183 = 3 8 61, 6l\n. Since also 
0(5) = 6 = 2 • 3, we cannot have a(61) = 2, for a(612) = 3783 = 3 • 13 • 97 and 
we would have 33|n (i.e., a,1 > 2). Hence, oi(61) iL 4. Then, using a simple 
consequence of (4), 

t 

61 612 

P;* 13,61 

so, taking logarithms and rearranging, 
t V^ 1 <, -, o , 13 , 6 183 14076605 ^ - < l o g 2 - l o g T - l o g - - log ̂  - log 1 3 8 4 5 8 4 1 

i = i 

+ 1 x 1 , 1 , 1 = 
3 5 13 61 a' 

If ot/13N .> 4 , then we s i m i l a r l y o b t a i n 

£ ^7 < log 2 - log(l + i + i ) - log(l + i ) 

- l o g ( l + -r \ + ~ \ + - ^ + - ^ - ) + ~ + i + ~~ 
V 13 13 2 1 3 3 1 3 V 3 5 13 

Suppose now t h a t OL1 >. 4 and a 2 = 1. Then, 

ZjT < ^g 2 - log(l + f + ^ + ̂  + i ) - log(l + i ) + i + \ < a. 

13 < a -
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Next, suppose that a2 >_ 5. Then, 

X)~< l°g 2 - logfl +f + ̂  

L o g ( 1 + I + A+J_ + i + ^ + l + I < a . 

Finally, suppose k > 2, so a2 > 2, Since ak >_ 1, we obtain, proceeding as 
above, 

log 2 > log(l + j-) + log(l + I + ̂ ) + log(l + I + -L) + g'-L 

E 1 j. i 1 3 a. i 3 1 ! ! ! — + log T • + log 25 " 3 " j " - r • 

But p _>_ 13 (though we can easily demonstrate that in fact p >_ 17), so, 
t k 

E l ^ 0 , 13 n 3 1 1 1 1 ^ — < log 2 - log — - l o g — + - • + - + 333 < a. 
i = l ^i 

This completes the proof of (i). 

(ii) We are given that pl = 5. The details in the following are similar 
to those above. Suppose, until the last paragraph of this proof, that ax = 2. 
Since a(52) = 31, we have 31 \n. Now, a(312) = 993 = 3 - 3 3 1 and 3Jn, so we 
must have a(31) >_ 4. It follows from (2) and from the fact that 3/fft, that 
if p < 73, then pk must be either 13, 37, or 61 (so we cannot have a1 = 1). 

Suppose first that p =61. Then a(61\ >_ 1 and 

t ^ < i o g 2 - i o g ( i + i + i)-iog(i + i + - i T + -i? + -i,; 

- iog(l+^ + i + ̂ - + ̂ -= b. 

If pk = 1 3 , t h e n , by ( 2 ) , p 2 = 7. a ( 7 2 ) = 57 = 3 - 1 9 , so a 2 >. 4 , s i n c e 3/fn. 
Also , ot , j 3» .> 1 , so 

L ^ < log 2 - iog(i + j + jr) - iog(i + y + -yr + yj + y^ 

-log(l+^)-log(l+i + ̂  + ̂  + ^ 

If pk = 37, then, by (2), 19 \n. a(192) = 381= 3-127, soa ( 1 9 ) >_ 4. Since 

V — < log 2 - logfl + i + - M - logfl + -~r + — + -^— + — 
f^Pi \ 5 52/ *\ 19 192 193 19L 

logfl +-~ + ~ + ̂ j + ~ 
3 1 31z 313 314 
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If p >: 73, then, as in the last paragraph of the proof of (i), we h ave 
t 

Finally, suppose 04 >. 4. Then pk >_ 13 and, as in the preceding paragraph, 

S i < l o g 2 - l o g ( 1 + i + ^ + ^ + ^ ) + i + rri?< &-
This completes the proof of (ii). 

I am grateful to Professor H. Halberstam for suggesting a simplification 
of this work through more explicit use of the inequality (4). 
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A SIMPLE CONTINUED FRACTION REPRESENTS 
A MEDIANT NEST OF INTERVALS 
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1. While working on some mathematical aspects of the botanical problem 
of phyllotaxis, I came upon a property of simple continued fractions that is 
simple, pretty, useful, and easy to prove, but seems to have been overlooked 
in the literature. I present it here in the hope that it will be of interest 
to people who have occasion to teach continued fractions. The property is 
stated below as a theorem after some necessary terms are defined. 

2. TeAmZnoZogy: For any positive integer n, let n/0 represent °°. Let 
us designate as a "fraction" any positive rational number, or 0, or °°, in the 
form alb, where a and b are nonnegative integers, and either a or b is not 
zero. We say the fraction is in lowest terms if (a, b) = 1. Thus, 0 in low-
est terms is 0/1, and °°  in lowest terms is 1/0., 

If inequality of fractions is defined in the usual way, that is 

alb < eld if ad < be, 

it follows that x < °°  for x = 0 or any positive rational number. 


