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The Values of Xk and ek , 1 <. k <_ 10 

k 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

K 
0 
0 
0 
2 
6 
8 
14 
17 
26 
39 

£fc 

0 
0 
0 
0.066667 
0.041667 
0.008929 
0.002401 
0.000375 
0.000064 
0.000009 
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EVALUATION OF SUMS OF CONVOLVED POWERS 
USING STIRLING AND EULERIAN NUMBERS 

H. W. GOULD 
West Virginia University, Morgantown, W. Va. 26506 

ABSTRACT 

It is shown here how the method of generating functions leads quickly to 
compact formulas for sums of the type 

0±k±n 
using Stirling numbers of the second kind and also using Eulerian numbers. 
The formulas are, for the most part, much simpler than corresponding results 
using Bernoulli numbers. 

1. INTRODUCTION 

Neuman and Schonbach [9] have obtained a formula for the series of con-
volved powers 

n 
(1.1) S(i,j;n) = £fcf(n - k)s' 

fc = o 
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using Bernoulli numbers. Although the formula expresses S(i,j;n) as a poly-
nomial of degree i + j + 1 in n, and this mode of expression is useful, still 
the formula is rather clumsy and hard to recall. Below we shall show how the 
method of generating functions can be used to obtain elegant closed forms for 
(1.1) very quickly. The first of these uses the Stirling numbers of the sec-
ond kind, and the second uses the Eulerian numbers. Both results give (1.1) 
as series of binomial coefficients in n, rather than directly as polynomials 
expressed explicitly in powers of n. For many purposes of computation and 
number theoretic study, such expressions are desirable. The significant re-
sults below are formulas (3.6), (3.8), (5.3), and (7.3). 

Glaisher [4] and [5] was the first to sum (1.1) using Bernoulli numbers. 
Carlitz [3] has shown some extensions of [9] and connections with Eulerian 
numbers. Our results overlap some of those of Carlitz, but were obtained in 
August 1974 before [3] was written. 

2. A GENERATING FUNCTION 

Y, tnS(i,j;n). 
n = 0 

k = 0 n=*k k=0 n = 0 

so that we have at once the elegant generating function 

(2.2) G(t;i,j) = £ kHk • £ ^ n -
k = 0 n = 0 

The generalized power series 

2>v< 
k 

may be summed in a variety of ways. We shall use the methods of (i) Stirling 
numbers of the second kind and (ii) Eulerian numbers. Our (2.2) is (3.4) in 
Carlitz [3]. 

3. METHOD OF STIRLING NUMBERS OF THE SECOND KIND 

It is an old fact that 
P 

(3.1) (tDff(t) =X S(p9k)tkDkf(t), 
k = 0 

where D = d/dt and S(p,k) is a Stirling number of the second kind. Expli-
citly, 

(3.2) k!S(p,k) = A V = E<-D*-J"0)fcP. 
j-o w / 

The formula dates back more than 150 years, but, for a recent example, see 
Riordan [10, p. 45, ex. 18]. Riordan gives a full account of the properties 
of Stirling numbers of both first and second kinds. Other historical remarks 
and variant notations are discussed in [6], Applying the formula is easy be-
cause (tD)ptk = kptk, whence we have 

(2.1) G(t;i,j) 

Then 

G(t;i,j) 
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(3.3) £ ̂ V = V k\S(p,k) ^—— . 

This, too, is a very old formula. It converges for \t\ < 1, but we treat it 
as a formal power series. Carlitz [2] gives a good discussion of formal power 
series techniques. 

Using (3.3) in (2.2), we find 

• i+j P v 

(3.4) G(t;iJ) = E " ,+ 2 Z ^ ! ( p - k)lS(i,k)S(j,r-k). 
r=0 (1 - t) k=0 

Throughout the rest of the paper, we shall write, for brevity, 

r 

(3.5) 5,(i,j) =2/c!(r-/c)!5(i,/c)5(j,2»-/c). 
k = o 

Applying the binomial theorem, we find next 

i> = 0 n = 0 

=Ei(i«)«-«.''' 
v = 0 n=r 

n=0 r=0 

In the next-to-last step here, the upper limit v = i, + j might as well have 
been v = °°  because of zero terms involved, since S(p,k) = 0 when k > p. This 
makes manipulation easier. Equating coefficients of tn and dropping some zero 
terms, we find finally then our desired formula 

(3.6) S(iJ;n) =J2[Hl)sr(i,j). 
r = 0 

This simple expression may be compared with the bulky form of expression given 
in [9] using Bernoulli numbers. 

Having found our desired formula, we can next offer a much quicker proof. 
Recall [10, p. 33] that 

n 
(3.7) x" - £ (X\v\S(n,r). 

V = 0 
This gives at once 

k \ n „ ky =Y( rlS(i,r)i2slS(j,s)(l)(n-k), 
£?o ZTo \i /\ s / 

whence, using formula (3.3) in [8], a modified Vandermonde addition formula, 
we get on summing from k = 0 to k = n, 

(3.8) S(i,j;n) ^riSfi.rl^lsy.s)!^! 
r=Q s=0 
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By simply putting s - v for s and interchanging the summation order, we see 
that this is nothing other than our former result (3.6). 

h. EXAMPLES OF THE STIRLING NUMBER METHOD 

For the sake of completeness, we recall [10, p. 48] some of the values of 
S(n,k): 

0 
1 
2 
3 
4 
5 
6 
7 

n 

0 

1 

1 

1 
1 
1 
1 
1 
1 
1 

2 

1 
3 
7 

15 
31 
63 

3_ 

1 
6 
25 
90 
301 

4_ 

1 
10 
65 
350 

5 

1 
15 
140 

6 

1 
21 

7 -

1 

U k_ 

Here, S(n,k) = 0 when k > n and S(n,0) = 0 for n >. 1. 
For j = 0, formula (3.6) becomes the well known 

(4.1) S(i 
1 

,0;n) = £ (" + J)r!S(i,i>), w >. 0, i > 0 . 
v> - n > ' 

Incidentally, in some places in the vast literature r\S(i-,r) has been called 
a Stirling number, and both arrays turn up very often in odd places with new 
notations. There are at least 50 notations for Stirling numbers. Here are a 
few examples of (4.1): 

S(l,0;n) = (n+
2
1), 

5(2,0;») = ( n 2 1 ) + 2 ( " 3 1 ) ' 

5(3.0;„,-(»J1) + 6(»^) + 6(»;1). 

S(,,0;n) - (n+
2

1) + 14(^) + Se^1) + 2 A ( ^ 1 ) . 

For j = 1 we shall obtain substantially the same coefficients, the difference 
being that the lower indices are each increased by 1. Thus: 

5(2,1;«) = { 3 ) + 2̂  4 J = 12 > 
3?r 5nd + 2n 

60 

^^^^crj^ftVKn1)-^;1) 
2n6 - 5 ^ + 3n^ 

60 

where we have indicated, for comparison, the values obtained in [9]. 



492 EVALUATION OF SUMS OF CONVOLVED POWERS 
USING STIRLING AND EULERIAN NUMBERS 

[Dec. 

For j - 1, the following is a brief table of the coefficients in the ar-
ray: 

i = 2 
i = 3 
i = 4 
i = 5 
i = 6 

1 2 
1 6 6 
1 14 36 24 
1 30 150 240 120 
1 62 450 1560 1800 720 

For j = 3, we find the following formulas: 

sa,3;n)-(n+
3
1)+6(nl1) + 6(n+

5
1)t 

5(2,3;.) = (" + 1) + afj 1 ) + isf^1) + 12(^;1), 

S(3,3;n> - (" + 1) + n f ^ 1 ) + A S ^ 1 ) + 72(^ 1) + S G ^ 1 ) , 

and so forth. 

5. METHOD OF EULERIAN NUMBERS 

The Eulerian numbers [1], [10, pp. 39, 215] are given by 

(5.D A„fi ^ ( - D T ^ C J - k)K-
k = o 

These must not be confused with Euler numbers appearing in the power series 
expansion of the secant function. The Eulerian numbers satisfy 

A n>3 = An,n-j + i9 row symmetry, n >_ 1 , 

= jAn.1}j + (n - j + D ^ « - i , j - i , 
and 

An, 
n 

J = l 

Again, for completeness, here is a brief table of A n ^ 

0 
1 
2 
3 
4 
5 
6 
7 

n 

0 

1 

1_ 

1 
1 
1 
1 
1 
1 
1 

2 

1 
4 
11 
26 
57 
120 

3_ 

1 
11 
66 
302 

1191 

4_ 

1 
26 
302 

2416 

5_ 

1 
57 

1191 

6 

1 
120 

7 • 

1 

j J_ 

These numbers are frequently rediscovered, for example, recently by Voelker 
[11] and [12], where no mention is made of the vast literature dealing with 
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these numbers and tracing back to Euler. For our purposes, we need the well-
known expansion 

(5.2) x>K^= a - tr-lyEtk
Antk. 

k=0 k=0 

This expansion is known to be valid for \t\ < 1, but again we treat all series 
here as formal power series since we do not use the sums of any infinite se-
ries. We never assign t a value, but equate coefficients only. 

Applying this to (2.2), we find 

. . l 3 

G(t;i,j) = (1 - t)"W~2XX^jrX]t%.)e 
r=0 s=0 

i + 3 

E(i+J'r+1)*5>x; 
fe=0 / r=0 s=o 

A . A . 

n = 0 r = 0 N " * 's=0 

and by comparison of coefficients of tn we have our desired formula 
i + j 

A- a A • «.3) w^-zf i^nE j , r-8 
0 

Here we have again dropped some of the terms that are zero by noting that 
An • = 0 whenever j > n. Formula (5.3) is (3.6) in Carlitz [3]. 

As with our previous Stirling number argument, we could obtain (5.3) by 
another method. We recall that in fact 

(5.4) ^n=i2(x+i~i)^,i 
J=0 

and form the product kz (n - k)J and sum from k = 0 to k = n to obtain a for-
mula for (5.3) analogous to (3.8). We omit the details. 

6. EXAMPLES OF THE EULERIAN NUMBER METHOD 

When j = 0, formula (5.3) becomes, of course, the familiar relation 

(6.1) S(i,0;n) = £ (" + l)Ai, r . n >0, i >l. 
r = l 

To see that this is so, we proceed as follows. By (5.3), 

•^i, s ^ 0 , v - s 

\ i+1 )Ai,r, s i n c e A0jr_s = 0 f or r f s, 
r= 0 
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= iL \ " + i )Ai,r > since Ait0 = 0 for i >_ 1, 
r= 1 

i 

= Y^ Q + iV^-^+i' by PuttinS ̂  - ̂  + 1 for p, 
r= 1 

t 

( '+i)Ai,r9 by the symmetry relation. 
I» = 1 

For J = 0, then, we have the following formulas: 

5(1,0;n) = j^ 1 ) , 

S(2,0;n) = ( " ^ ) + ( ^ 2 ) , 

W.O^-C^+ll^ + ̂  + ll̂ Ĵ + f'J4), 
etc. 

For j = 1, we find 

5 ( 2 , i ; » ) - ( M ; 1 ) + ( n : 2 ) 

s ( 3 , i ;n ) . ( B ; i ) + *f , ; 2 ) + (n;3) 

and so on. These again are a different way of saying what was found in [9], 

7. ALTERNATIVE EXPRESSION OF THE STIRLING NUMBER EXPANSION 

( n +1\ Formula (3.6) uses the values of I -. ). We wish to show now that we can 

transform this result easily into a formula using just f . i)> i-e«? direct-
ly as a series of binomial coefficients in n rather than n + 1. We will need 
to recall, see [10], the recurrence relation for Stirling numbers of the sec-
ond kind 

(7.1) S(m,k) = kS(m-l,k) + S(m-l,k-l). 

In this, set m = j + 1 and replace k by v - k. We get 

(7.2) S(j+l,r-k) = (r-k)S(j9r-k) + S(j ,r - k - 1). 
Now, by (3.6) and the usual recurrence for binomial coefficients, we have 
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D(")5,(i,«;) + U (Z)Sr-iV>3) 

^95 

V = 0 

r=0 

However, Sr(i,j) + Sr_1(iij) 
•p V - l 

= J^ kl (r -k)\S(i,k)S(j,r -k) + £ k\ (r - 1 - k) \S(i,k)S(j,r - 1 - k) 
k = o fc = o 

r v- 1 
]T 7<! (p - fc - 1) \S(i9k) (r - k)S(j,r - k) + ̂  fc! (p - 1 - fc) \S(i9k)SU,r -1-k) 
k = 0 k = 0 

= X feKr-l-WllW^W+l^-fe) -5(i,/c)5'(j,3?-fe-l)}, by (7.2) 
k = 0 

r- 1 

+ J^kl(Y>-l -k)\S(i,k)S(j,r-l -k) 
v-1 fe=0 

= £ f c ! (r-fe-l)!5(t,W5(j+l,r-W + r\S(i,r)S(j ,0). 
k = 0 

The extra term here may be dropped when we consider j >_ 1. . Therefore, we have 
the new result that 

i + j r 

(7.3) S(i,j;n) =• ]T ( J )£fc! (r-fc) !S(i,fc)S(j+l,r+ 1-fc), j il, iiO. 
r = 0 fe = 0 

ExampteA: Let J = 1 again. We find 

5(0, l;n) = (J) + (2), 

5(l,l;n)-(;) + (5), 

5(2,l;») -•(?)+ 3(5) +2(»), 

For j = 1, the general pattern of these coefficients begins as follows: 

0 
1 
2 
3 
4 
5 
6 

£ 

0 

1 

1 

1 
1 
1 
1 
1 
1 
1 

2_ 

1 
3 
7 

15 
31 
63 

3_ 

2 
12 
50 
180 
602 

4_ 

6 
60 
390 
2100 

5_ 

24 
360 
3360 

6_ 

120 
3520 

7 -

720 

V 

It is interesting to note that these coefficients appear in another old 
formula: 
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i k 

(7.4) S(i,0;n) = £ <-!)*(*. + ± ) E ^ ( )) W + D* , 
fc = 0 j" = 0 

val id for £ J> 1, n >_ 1. 
Ex.ampZ&>: 

S<1,0;») - (J) + (^), 

*«••"•>• ( I ) + 'G) + " ( 3 ) + 'fi)-
and so forth. 

There is yet another old formula involving Stirling numbers of the second 
kind which we should mention. It is 

i 
(7.5) S(i,0;n) = E (-1)*" "("+ iV«S'(i,r) , n >. 0, i >. 1. 

r = 0 

This occurs, for example, as the solution to a problem [13] in the .American 
Mathemat-ieal Monthly. 

Examples: 

S(l,0;n) = j ^ 1 ) , 

5(2,0;n)-.("J1) + 2("+ 2 ), 

^<3,0;») - ("J1) - 6(» + 2) + 

^(4,0;n) = -(-;1) + "(W32) " ̂ D + 24(WD' 
and so forth. 

8. FINAL REMARKS 

It is interesting to note that the original sum (1.1) is a type of con-
volution. So also formulas (3.6), (5.3), and (7.3) involve convolutions of 
the Stirling and Eulerian numbers. The formula found in [9] is not of this 
type. This is so because of the way in which the binomial theorem was first 
used. It would evidently be possible to obtain convolutions of the Bernoulli 
numbers. To get such a formula using Bernoulli polynomials is easy. Let us 
recall that 

(8.D ~—=Y,h~B»(x)> 1*1 < 2 7 T > 
defines the Bernoulli polynomial Bn(x). Then Bn(0) = Bn are the Bernoulli 
numbers. It is also a well-known old formula that then for all real x> 

n 

(8.2) x" =;r^TEr£1Hfe), n > 
k-o k 
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Form the product k1'(n - kY by using this formula to expand kl and (n - k)J'. 
Sum both sides and we get 

(8-3) S(iJ;n} - ̂ t^^^jt^^tBAmAn - k), 
r=0 ' d s=0 k = 0 

which brings in a convolution of Bernoulli polynomials. Since the Bernoulli 
polynomials may be expressed in terms of Bernoulli numbers by the further 
formula 

n 

(8.4) BAx) = X) {l)xn""B^ 
m = Q 

it would be possible to secure a convolution of the Bernoulli numbers. How-
ever, the author has not reduced this to any interesting or useful formula 
that appears to offer any advantages over those wev have derived here or those 
in [9]. We leave this as a project for the reader. 

It is also possible to obtain a mixed formula by proceeding first as in 
[9] to get 

7(i,j;n) = £(-1)' (^J'~l>i+r> 
v = 0 ' k = 0 

apply one of our Stirling number expansions to the inner sum and get, e.g., 

J i + r 

(8.5) S(i,j;n) = £ ('V ( ̂ ""'"'E (l X ±
1}klS(i +r>k) > 

V=0 fc=0 

but the writer sees no remarkable advantages to be gained. 
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b-ADIC NUMBERS IN PASCAL'S TRIANGLE MODULO b 
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For the binomial coefficients in Pascal's triangle we write their small-
est nonnegative residues modulo a base b. Then blocks of consecutive integers 
within the rows may be interpreted as Z?-adic numbers. What Z?-adic numbers 
can occur in the Pascal triangle modulo bl In this article we will give the 
density of such numbers and determine the smallest positive integer h(b) , 
such that its b-ad±c representation does not occur (see [3] for b = 2). 

We use the notation 

m 

t =Y1 a ^ = (amam-l '" a i a v \ > 0 - ai - b ~ X ' am $ ° > 
i = 0 

for positive integers t . First we will prove the existence of b-ad±c numbers 
which do not occur. 


