raised. It certainly is possible to introduce unusual terms into generating functions by the use of unusual operators.

REFERENCES

1. George Boole, "On the Theory of Developments, I," Combridge Math. Journat, Vo1. 4 (1845), pp. 214-223.
2. Brice Bronwin, "On Certain Symbolical Representations of Functions," Combridge and Dublin Math. Journal, N.S., 2(6) (1847), 134-140.
3. L. Carlitz, 'Generating Functions for Powers of Certain Sequences of Numbers," Duke Math. Journal, Vol. 29 (1962), pp. 521-537.
4. Arthur Cayley, "On Lagrange's Theorem," Cambridge Math. Journal, Vo1. 3 (1843), pp. 283-286.
5. Arthur Cayley, 'On Lagrange's Theorem," Cambridge and Dublin Math. Journal, N.S., 6(10) (1851), 37-45.
6. H. W. Gould, "Generating Functions for Products of Powers of Fibonacci Numbers," The Fibonacci Quarterly, Vo1. 1, No. 2 (1963), pp. 1-16.
7. H. W. Gould \& A. T. Hopper, "Operational Formulas Connected with Two Generalizations of Hermite Polynomials," Duke Math. Journal, Vo1. 29 (1962), pp. 51-63.
8. I. I. Kolodner, "On a Generating Function Associated with Generalized Fibonacci Sequences," The Fibonacci Quarterly, Vol. 3, No. 4 (1965), pp. 272-278.
9. John Riordan, "Generating Functions for Powers of Fibonacci Numbers," Duke Math. Journal, Vo1. 29 (1962), pp. 5-12.
10. L. J. Slater \& A. Lakin, 'Two Proofs of the ${ }_{6} \Psi_{6}$ Summation Theorem," Proc. Edinburgh Math. Soc., (2) 9 (1956), 116-121.
11. David Zeit1in, 'Generating Functions for Products of Recursive Sequences," Trans. Amer. Math. Soc., Vol. 116 (1965), pp. 300-315.
(continued from page 497)
12. L. Carlitz, "Generating Functions," The Fibonacci Quarterly, Vol. 7, No. 4 (1969), pp. 359-393.
13. L. Carlitz, "Note on Convolved Power Sums," SIAM J. Math. Anal., Vol. 8 (1977), pp. 701-709.
14. J. W. L. Glaisher, "On a Class of Relations Connecting Any Consecutive Bernoullian Functions," Quart. J. Pure and Appl. Math., Vol. 42 (1911), pp. 86-157.
15. J. W. L. Glaisher, "On $1^{n}(x-1)^{m}+2^{n}(x-2)^{m}+\cdots+(x-1)^{n} 1^{m}$ and Other Similar Series," Quart. J. Pure and Appl. Math., Vol. 43 (1912), pp. 101122.
16. H. W. Gould, "Noch einmal die Stirlingschen Zah1en," Jber. Deutsch. Math.Verein., Vol. 73 (1971), pp. 149-152.
17. H. W. Gould, "Explicit Formulas for Bernoulli Numbers," American Math. Monthly, Vo1. 79 (1972), pp. 44-51.
18. H. W. Gould, Combinatorial Identities (rev. ed.; Morgantown, W. Va.: By the author, 1972).
19. C. P. Neuman \& D. I. Schonbach, "Evaluation of Sums of Convolved Powers Using Bernoulli Numbers," SIAM Review, Vol. 19 (1977), pp. 90-99.
20. John Riordan, An Introduction to Combinatorial Analysis (New York: John Wiley \& Sons, 1958).
21. D. H. Voelker, "On a Class of Polynomials," Notices of Amer. Math. Soc., Vol. 18 (1971), p. 800. Abstract 71T-A162.
22. D. H. Voelker, "On a Class of Polynomials," Rev. Un. Mat. Argentina, Vol. 26 (1972), pp. 115-124.
23. Problem 1125, American Math. Monthly, Vol. 61 (1954), p. 423; Solution to Problem 1125, American Math. Monthly, Vol. 62 (1955), pp. 125-126. Posed by Walter James; solution by A. R. Hyde.

A FIGURATE NUMBER CURIOSITY: EVERY INTEGER IS A QUADRATIC FUNCTION OF A FIGURATE NUMBER

HARVEY J. HINDIN
Empire State College, Stony Brook, NY 11790
In this note we prove the following: Every positive integer n can be expressed in an infinite number of ways as a quadratic function for each of the infinite number of figurate number types.

The nth figurate r-sided number p_{n}^{r} is given by
(1)

$$
p_{n}^{r}=n((r-2) n-p+4) / 2
$$

where $n=1,2,3, \ldots$ and $r=3,4,5, \ldots$. Therefore, the snth figurate number is given by

$$
\begin{equation*}
p_{s n}^{r}=\operatorname{sn}((r-2) s n-r+4) / 2 \tag{2}
\end{equation*}
$$

However, (2) is a quadratic in n. Solving for n and taking the positive root yields

$$
\begin{equation*}
n=\frac{(r-4)+\sqrt{(r-4)^{2}+8(r-2) p_{s n}^{r}}}{2(r-2) s} \tag{3}
\end{equation*}
$$

which allows us to express n as stated above. A special case of (3) for pentagonal numbers ($r=5$) was obtained by Hansen [1].

REFERENCE

1. R.T. Hansen, "Arithmetic of Pentagonal Numbers." The Fibonacci Quarterly, Vol. 8, No. 1 (Feb. 1970), pp. 83-87.
