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raised. It certainly is possible to introduce unusual terms into generating 
functions by the use of unusual operators. 
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A FIGURATE NUMBER CURIOSITY: EVERY INTEGER IS A 

QUADRATIC FUNCTION OF A FIGURATE NUMBER 

HARVEY J. HIND IN 
Empire State College, Stony Brook, NY 11790 

In this note we prove the following: Every positive integer n can be ex-
pressed in an infinite number of ways as a quadratic function for each of the 
infinite number of figurate number types. 

The nth figurate r-sided number pr is given by 

(1) p* = n((r - 2)n - r + 4)/2, 

where n = 1, 2, 3, ... and r = 3, 4, 5, ... . Therefore, the snth figurate 
number is given by 

(2) pv
sn = sn((r - 2)sn - r + 4)/2. 

However, (2) is a quadratic in n. Solving for n and taking the positive root 
yields 

(p - 4) + /(r - 4) 2 + 8(r - 2)ps
r
n 

which allows us to express n as stated above. A special case of (3) for pen-
tagonal numbers (r = 5) was obtained by Hansen [1]. 
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