Form the product $k^{i}(n-k)^{j}$ by using this formula to expand k^{i} and $(n-k)^{j}$. Sum both sides and we get

$$
\begin{equation*}
S(i, j ; n)=\frac{1}{i+1} \sum_{r=0}^{i}\binom{i+1}{r} \frac{1}{j+1} \sum_{s=0}^{j}\binom{j+1}{s} \sum_{k=0}^{n} B_{r}(k) B_{s}(n-k), \tag{8.3}
\end{equation*}
$$

which brings in a convolution of Bernoulli polynomials. Since the Bernoulli polynomials may be expressed in terms of Bernoulli numbers by the further formula

$$
\begin{equation*}
B_{n}(x)=\sum_{m=0}^{n}\binom{n}{m} x^{n-m B_{m}}, \tag{8.4}
\end{equation*}
$$

it would be possible to secure a convolution of the Bernoulli numbers. However, the author has not reduced this to any interesting or useful formula that appears to offer any advantages over those we have derived here or those in [9]. We leave this as a project for the reader.

It is also possible to obtain a mixed formula by proceeding first as in [9] to get

$$
S(i, j ; n)=\sum_{r=0}^{j}(-1)^{r}\binom{j}{r} n^{j-r} \sum_{k=0}^{n} k^{i+r}
$$

apply one of our Stirling number expansions to the inner sum and get, e.g.,

$$
\begin{equation*}
S(i, j ; n)=\sum_{r=0}^{j}(-1)^{r}\binom{j}{r} n^{j-r} \sum_{k=0}^{i+r}\binom{n+1}{k+1} k!S(i+r, k), \tag{8.5}
\end{equation*}
$$

but the writer sees no remarkable advantages to be gained.

REFERENCES

1. L. Carlitz, "Eulerian Numbers and Polynomials," Math. Magazine, Vol. 32 (1959), pp. 247-260.
(continues on page 560)

$\boldsymbol{b}-A D I C$ NUMBERS IN PASCAL'S TRIANGLE MODULO b

HEIKO HARBORTH
Technische Universität Braunschweig, West Germany
For the binomial coefficients in Pascal's triangle we write their smallest nonnegative residues modulo a base b. Then blocks of consecutive integers within the rows may be interpreted as b-adic numbers. What b-adic numbers can occur in the Pascal triangle modulo b ? In this article we will give the density of such numbers and determine the smallest positive integer $h(b)$, such that its b-adic representation does not occur (see [3] for $b=2$).

We use the notation

$$
t=\sum_{i=0}^{m} a_{i} b^{i}=\left(a_{m} a_{m-1} \ldots a_{1} a_{0}\right)_{b}, 0 \leq a_{i} \leq b-1, a_{m} \neq 0
$$

for positive integers t. First we will prove the existence of b-adic numbers which do not occur.

Lemma 1: (1011) ${ }_{2}$ is not to be found within any row of the Pascal triang1e modulo 2.

Proof: We assume that there are integers n and k with

$$
\binom{n}{k} \equiv\binom{n}{k+2} \equiv\binom{n}{k+3} \equiv 1 \quad \text { and } \quad\binom{n}{k+1} \equiv 0(\bmod 2) .
$$

These congruences substituted in

$$
\begin{equation*}
(k+1+i)\binom{n}{k+1}=(n-k-i)\binom{n}{k+i} \tag{1}
\end{equation*}
$$

for $i=0,1,2$, gives $n \equiv k(\bmod 2), k \equiv 0(\bmod 2)$, and $n \equiv 1(\bmod 2)$, respectively, which is a contradiction.

Lemma 2: (111) b is not to be found within any row of Pascal's triangle modulo b with $b>2$.

Proof: We assume that

$$
\binom{n}{k} \equiv\binom{n}{k+1} \equiv\binom{n}{k+2} \equiv 1(\bmod b)
$$

Together with (1), for $i=0$ and $i=1$, we conclude that $n \equiv 2 k+1(\bmod b)$, and $n \equiv 2 k+3(\bmod b)$, respectively. However, both congruences are possible only if $b=2$.

We are now able to determine the density.
Theorem 1: Almost all b-adic numbers cannot occur within the rows of Pascal's triangle modulo b.

Proof: As noted in [4], it is well known that the density of those b-adic integers not containing a given sequence of digits is 0 (see [2], p. 120). Thus, the proof is given by Lemmas 1 and 2.

Theorem 2: Let $h(b)$ be the smallest b-adic number not being found within any row of Pascal's triangle modulo b. Then, $h(b)=b^{2}+b+1=(111)_{b}$ for $b>2$, and $h(2)=11=(1011)_{2}$.

We first prove two lemmas.
Lemma 3: Let $b=b_{1} b_{2}$ with $\left(b_{1}, b_{2}\right)=1$. Then $\left(a_{m} \ldots a_{0}\right)_{b}$ occurs in the Pascal triangle modulo b if and only if $\left(\alpha_{i m} \ldots \alpha_{i 0}\right)_{b_{i}}$ for $i=1,2$ occur in the triangles modulo b_{i} with $\alpha_{i j} \equiv \alpha_{j}\left(\bmod b_{i}\right), j=0,1, \ldots, m$.

Proof: One direction of the proof is trivial.
In the following, we use the result of [1] and [6], that $\binom{n}{k}$ (mod b) is periodic for fixed k with the minimal period N being the product of all prime powers $p^{\alpha+\beta}$ with p^{α} from the canonical factorization of b and β from $p^{\beta} \leq k$ $<p^{\beta+1}$. Thus, N depends only on the prime factors of b and on k (see [5] for further references). By reasons of symmetry, a corresponding periodicity of length L holds for $\binom{n+\ell}{k+\ell}$ with fixed n and k.

From this and by the assumption, we are able to find n_{i} and k_{i} such that for $i=1,2$,

$$
\binom{n_{i}}{k_{i}+j} \equiv\binom{n_{i}+x_{i} L_{i}}{k_{i}+x_{i} L_{i}+j} \equiv \alpha_{i(m-j)}\left(\bmod b_{i}\right), j=0,1, \ldots, m
$$

with minimal periods L_{i} each being the lowest common multiple of $m+1$ minimal
periods. From $\left(b_{1}, b_{2}\right)=1$ we have $\left(L_{1}, L_{2}\right)=1$. Thus, the diophantine equation,

$$
k_{1}+x_{1} L_{1}=k_{2}+x_{2} L_{2},
$$

has solutions x_{1}, x_{2}. For fixed values x_{1}, x_{2}, we then have minimal periods N with

$$
\binom{n_{i}+x_{i} L_{i}+y_{i} N_{i}}{k_{i}+x_{i} L_{i}+j} \equiv a_{i(m-j)}\left(\bmod b_{i}\right), j=0,1, \ldots, m
$$

Finally, $\left(N_{1}, N_{2}\right)=1$ guarantees solutions y_{1}, y_{2} of

$$
n_{1}+x_{1} L_{1}+y_{1} N_{1}=n_{2}+x_{2} L_{2}+y_{2} N_{2}
$$

which completes the proof.
Lemma 4: In Pascal's triangle modulo p^{α}, p being a prime, there are arbitrarily large partial triangles with

$$
\binom{n+n_{r}}{k+k_{r}} \equiv r\binom{n}{k}\left(\bmod p^{\alpha}\right), n \geq 0, k \geq 0,
$$

for every r from 1 to p^{α}.
Proof: We first show

$$
\begin{array}{r}
\binom{r p_{k}^{\alpha \beta}}{k} \equiv 0\left(\bmod p^{\alpha}\right) \text { for } p^{\alpha \beta}-p^{\alpha \beta-\alpha+1}<k<p^{\alpha \beta}+p^{\alpha \beta-\alpha+1} \tag{2}\\
k \neq p^{\alpha \beta}
\end{array}
$$

Let γ be the exponent of p in the canonical factorization of the binomial coefficient in (2). Then, by a theorem of Legendre ([7], p. 13), we have,

$$
\begin{aligned}
\gamma & =\sum_{i \geq 1}\left\{\left[\frac{r p^{\alpha \beta}}{p^{i}}\right]-\left[\frac{k}{p^{i}}\right]-\left[\frac{r p^{\alpha \beta}-k}{p^{i}}\right]\right\} \\
& \geq \sum_{i=1}^{\alpha \beta}\left\{-\left[\frac{k}{p^{i}}\right]-\left[\frac{-k}{p^{i}}\right]\right\} \geq \sum_{i=\alpha \beta-\alpha+1}^{\alpha \beta} 1=\alpha,
\end{aligned}
$$

where $[x]$ means the greatest integer not exceeding x.
We further show by induction on α that $\binom{p p^{\alpha \beta}}{p^{\alpha \beta}}$, for $r=1,2, \ldots, p^{\alpha}$, is a complete system of residues modulo p^{α}. Let

$$
\begin{equation*}
P_{j}(r)=\prod_{\substack{i=1 \\(i, p)=1}}^{p_{j}^{j}-1} \frac{(r-1) p^{j}+i}{i} \tag{3}
\end{equation*}
$$

Then for $\alpha=1$ we can write

$$
\binom{r p^{\beta}}{p^{\beta}}=r \prod_{j=1}^{\beta} P_{j}(r) \equiv r(\bmod p) .
$$

In general, with $r=v p^{\alpha-1}+\rho, 1 \leq \rho \leq p^{\alpha-1}, 0 \leq v \leq p-1$, we get

$$
\binom{r p^{\alpha \beta}}{p^{\alpha \beta}}=r \prod_{j=1}^{\alpha \beta} P_{j}(r) \equiv r \prod_{j=1}^{\alpha-1} P_{j}(r) \equiv r \prod_{j=1}^{\alpha-1} P_{j}(\rho) \equiv v p^{\alpha-1}+\rho \prod_{j=1}^{\alpha-1} P_{j}(\rho)\left(\bmod p^{\alpha}\right)
$$

If we assume $\rho \pi P_{j}(\rho)$ to take all residues modulo $p^{\alpha-1}$, then the induction is complete.

As β may be chosen arbitrarily large, Lemma 4 follows with $n_{r}=r p^{\alpha \beta}$ and $k_{r}=p^{\alpha \beta}$.

Proof of Theorem 2: Lemmas 1 and 2 yield $h(b) \leq \ldots$. Because of Lemma 3, we need to consider only prime powers as moduli. Trivially,

$$
\left(a_{0}\right)_{p,}, 1 \leq a_{0}<p^{\alpha}
$$

occur as $\binom{n}{k}$ in the Pascal triangle modulo p^{α} (let $n=\alpha_{0}$ and $k=1$), and so do $\left(1 a_{0}\right)_{p^{x}}$ (1et $n=a_{0}$ and $k=0,1$), with $1 \leq \alpha_{0} \leq p^{\alpha}$. We then multiply the digits of $\left(1 \alpha_{0}\right)_{p^{\alpha}}$ by $r, 1 \leq r<p^{\alpha}$, and obtain all numbers $\left(\alpha_{1} \alpha_{0}\right)_{p^{\alpha}}$, including those with $\left(\alpha_{1}, p^{\alpha}\right)>\left(\alpha_{0}, p^{\alpha}\right)$. This is because of Lemma 4 and the symmetry of binomial coefficients. Further, (100) p^{α} occurs if $n=2 p^{\alpha}, k=0$, 1,2 , and (110) $p_{p^{\alpha}}$ if $n=2 p^{\alpha}+1, k=0,1,2$.

Now

$$
\sum_{i \geq 1}\left\{\left[\frac{r p^{\alpha}-2}{p^{i}}\right]-\left[\frac{p^{\alpha}-1}{p^{i}}\right]-\left[\frac{(r-1) p^{\alpha}-1}{p^{i}}\right]\right\} \geq \sum_{i=1}^{\alpha}\{\cdots\}=\alpha
$$

so that $\binom{n}{k} \equiv 0\left(\bmod p^{\alpha}\right)$, if $n=r p^{\alpha}-2$ and $k=p^{\alpha}-1$. Using (3), and with v being an integer, we have

$$
\begin{gather*}
\binom{r p^{\alpha}-2}{p^{\alpha}-2}=\frac{p^{\alpha}-1}{r p^{\alpha}-1} \prod_{j=1}^{\alpha} P_{j}(r) \equiv 1+v p\left(\bmod p^{\alpha}\right) \tag{4}\\
\binom{r p^{\alpha}-2}{p^{\alpha}}=(r-1) \frac{(r-1) p^{\alpha}-1}{p^{\alpha}-1}\binom{r p^{\alpha}-2}{p^{\alpha}-2} \equiv(r-1)\binom{r p^{\alpha}-2}{p^{\alpha}-2}\left(\bmod p^{\alpha}\right) .
\end{gather*}
$$

As $\left(1+v p, p^{\alpha}\right)=1$, we can find an integer x such that multiplying (4) and (5) by x yields the residues 1 and $r-1$. Because of Lemma 4, corresponding binomial coefficients occur in the Pascal triangle, so that the existence of all numbers $(10(r-1))_{p^{\alpha}}, 2 \leq r \leq p^{\alpha}$, is proved.

Thus, we have shown $h(b) \geq(111)_{b}$ for $b \geq 2$. The remaining binary numbers $(111)_{2},(1000)_{2},(1001)_{2}$, and $(1010)_{2}$ are to be found within the rows 3, 4, 5 , and 6 , respectively.

REFERENCES

1. R. D. Fray, "Congruence Properties of Ordinary and q-Binomial Coefficients," Duke Math. Joumal, Vol. 34 (1967), pp. 467-480.
2. G. H. Hardy \& E. M. Wright, An Introduction to the Theory of Numbers, 4th ed. (Oxford: Oxford University Press, 1962).
3. H. Harborth, "Aufgabe P 424, Dualzahlen im Pascal-Dreieck," Praxis der Mathematik, Vol. 13 (1971), pp. 76-77.
4. D. Singmaster, written communication to the author.
5. D. Singmaster, "Divisibility of Binomial and Multinomial Coefficients by Primes and Prime Powers" (to appear).
6. W. F. Trench, "On Periodicities of Certain Sequences of Residues," Amer. Math. Monthly, Vol. 67 (1960), pp. 652-656.
7. E. Landau, Vorlesungen über Zahlentheorie (New York: Che1sea, 1950).
