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Form the product k1'(n - kY by using this formula to expand kl and (n - k)J'. 
Sum both sides and we get 

(8-3) S(iJ;n} - ̂ t^^^jt^^tBAmAn - k), 
r=0 ' d s=0 k = 0 

which brings in a convolution of Bernoulli polynomials. Since the Bernoulli 
polynomials may be expressed in terms of Bernoulli numbers by the further 
formula 

n 

(8.4) BAx) = X) {l)xn""B^ 
m = Q 

it would be possible to secure a convolution of the Bernoulli numbers. How-
ever, the author has not reduced this to any interesting or useful formula 
that appears to offer any advantages over those wev have derived here or those 
in [9]. We leave this as a project for the reader. 

It is also possible to obtain a mixed formula by proceeding first as in 
[9] to get 

7(i,j;n) = £(-1)' (^J'~l>i+r> 
v = 0 ' k = 0 

apply one of our Stirling number expansions to the inner sum and get, e.g., 

J i + r 

(8.5) S(i,j;n) = £ ('V ( ̂ ""'"'E (l X ±
1}klS(i +r>k) > 

V=0 fc=0 

but the writer sees no remarkable advantages to be gained. 
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For the binomial coefficients in Pascal's triangle we write their small-
est nonnegative residues modulo a base b. Then blocks of consecutive integers 
within the rows may be interpreted as Z?-adic numbers. What Z?-adic numbers 
can occur in the Pascal triangle modulo bl In this article we will give the 
density of such numbers and determine the smallest positive integer h(b) , 
such that its b-ad±c representation does not occur (see [3] for b = 2). 

We use the notation 

m 

t =Y1 a ^ = (amam-l '" a i a v \ > 0 - ai - b ~ X ' am $ ° > 
i = 0 

for positive integers t . First we will prove the existence of b-ad±c numbers 
which do not occur. 
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L<imma 1: (1011) 2 is not to be found within any row of the Pascal trian-
gle modulo 2. 

PXOO&i We assume that there are integers n and k with 

(*H*«H*IS)SI - (*Ii)s ° < - » • 
These congruences substituted in 

a) <* + ! + *>(* + ? + * ) - < * - * - * > ( * ; * ) 
for i = 0, 1, 2, gives n E k (mod 2), & E 0 (mod 2), and n E 1 (mod 2), re-
spectively, which is a contradiction. 

Lomma 2: (111)^ is not to be found within any row of Pascalfs triangle 
modulo b with b > 2. 

Psioofi: We assume that 

Together with (1), for i = 0 and £ = 1, we conclude that n E 2& + 1 (mod 2?), 
and w E 2fc + 3 (mod b), respectively. However, both congruences are possible 
only if b = 2. 

We are now able to determine the density. 

ThdOJiQjn 1: Almost all b-ad±c numbers cannot occur within the rows of 
Pascal's triangle modulo b. 

VKOO^X As noted in [4], it is well known that the density of those £-adic 
integers not containing a given sequence of digits is 0 (see [2], p. 120). 
Thus, the proof is given by Lemmas 1 and 2. 

Jk2.0h.Qyn 2: Let h(b) be the smallest b-ad±c number not being found with-
in any row of Pascal's triangle modulo b. Then, h(b) - b2 + b + 1 = (111)^ 
for b > 2, and 7z(2) = 11 = (1011) 2. 

We first prove two lemmas. 

Lemma 3: Let b = bYb2 with (bl9 b2) = 1. Then (am ... a0)b occurs in the 
Pascal triangle modulo b if and only if (aim ... a ^ ) ^ for i = 1, 2 occur in 
the triangles modulo bi with a^j E a3- (mod b^) , j = 0, 1, . . . , m. 

VJ100&: One direction of the proof is trivial. , , 
In the following, we use the result of [1] and [6], that (̂ j (mod b) is 

periodic for fixed k with the minimal period N being the product of all prime 
powers p a + $ with pa from the canonical factorization of b and 3 from p$ ^k 
< p£ + 1. Thus, N depends only on the prime factors of b and on k (see [5] for 
further references). By reasons of symmetry, a corresponding periodicity of 

I n _j_ £ \ 
length L holds for I 7, , p ) with fixed n and k. 

From this and by the assumption, we are able to find n^ and k^ such that 
for i = 1, 2, 

with minimal periods L^ each being the lowest common multiple of m + 1 minimal 
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periods. From (Z?l5&2) = 1 we have (Ll5L2) = 1. Thus, the diophantine equa-
tion, 

K. 1 "t" X T±J I — fVo ' vC lyLl p 5 

has solutions o^ , #2. For fixed values xl9 x2J we then have minimal periods 
N with 

lni +xiLi+yiNi\ _ 
(mod bi), j = 0, 1, . . . , m. 

Finally, (/1/1, /l/2) = 1 guarantees solutions z/15 z/2 of 

n2 + a^Lj + ylNl = n2 + x2L2 + y2N2, 

which completes the proof. 

Lzmma 4: In Pascal's triangle modulo pa, p being a prime, there are ar-
bitrarily large partial triangles with 

0 £ £ ) = *(.*) (»° dP«),n>0, fc>0. 
for every r from 1 to pa. 

VK.00^', We first show 

(2) (^/T) E ° ( m ° d p a ) f° r p a 3 " P a 3 " a + 1 < ^ < P a B + p a 3 ' a + 1, 
fc ^ p a 3 . 

Let y be the exponent of p in the canonical factorization of the binomial 
coefficient in (2). Then, by a theorem of Legendre ([7], p. 13), we have, 

y-Z 
i2-l 

ppQ k 

T. - V% 

rpag - k 
pi _ 

t = a$ - a +1 

where [#] means the greatest integer not exceeding x. 

We further show by induction on a that ( Pag 1, for v = 1, 2, 

a complete system of residues modulo pa. Let 

(3) Pj (r) - TT (r " y + l • 
i = 1 

Then for a = 1 we can write 

3 

K)= ^TT^-^) E v < m o d p)« 
\ ^ / j - 1 

In general, with p = z;pa_1 + p, l ^ . p ^ p a _ 1 , 0 <. z; <L p - 1, we get 

/ a$\ a^ a - 1 a _ 1 a ~ 1 

(ppae ) = p T T p j ( p ) E ^TTpj(p) E P T T P J ( P ) E ^ p a _ 1 + P T T P J ( P ) <mod pa>-
J = l J = l J-.l <7 = 1 
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If we assume pirP. (p) to take all residues modulo pa~x, then the induction is 
complete. 

As (3 may be chosen arbitrarily large, Lemma 4 follows with nr = rpa® and 
kT = pae. 

VKOOh ofi Tk&Ofl&n 2: Lemmas 1 and 2 yield h(b) <_ . . . . Because of Lemma 
3, we need to consider only prime powers as moduli. Trivially, 

teo)p-:x , 1 1 a0 < pa, 

occur as [-L ) in the Pascal triangle modulo pa (let n = a0 and k = 1) , and so 

do (la0)pX (let n - a0 and k = 0,1), with 1 _£ a0 j£ pa. We then multiply the 

digits of (la0)pa by r, 1 < p < pa, and obtain all numbers (a1a0)pa , includ-

ing those with (a1? pa) > (a0, p a ) . This is because of Lemma 4 and the sym-

metry of binomial coefficients. Further, (100)pa occurs if n = 2pa, k = 0, 

1, 2, and (110)pa if n = 2pa + 1, k = 0, 1, 2. 

Now 

so that f^j E 0 (mod pa) , if n = rpa - 2 and k = p a - l. Using (3), and with 

y being an integer, we have 

(4) (7aa_"22) " — ^ - r T T ? - (r) = 1 + vp (mod p»), 
\P *• I rpa - 1 j = i J 

( 5 ) ( , - - 2 ) . ( , . i , ' - - ^ ; - ^ : , - ! ) . * - !>(->>;-) <„„, P . , . 

As (1 + vp, pa) = 1 , we can find an integer x such that multiplying (4) and 
(5) by x yields the residues 1 and r - 1. Because of Lemma 4, corresponding 
binomial coefficients occur in the Pascal triangle, so that the existence of 
all numbers (10(r - l))pa , 2 <_ r <_ pa, is proved. 

Thus, we have shown h(b) >_ (lll)z? for b _> 2. The remaining binary numbers 
(111)2, (1000)2, (1001)2j and (1010)2 are to be found within the rows 3, 4, 
5, and 6, respectively. 
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