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for some nonzero integer U. Finally, u0 = up, and un\u0 for n = 0, 1, ... . 
VK.00^'. By Lemma 7 and the fact that {un} is a kth order recurrent se-

quence, the sequence {un) is periodic with period M. Letting p be the funda-
mental period, we now show that the denominator of the generating function 
H(t)/K(t) must be of the form 1 - tp: 

Y^r = u0 + uxt + ••• + Up.^"1 + uQtp + u1tQ + 1 + ••• 

= u0(l + tp + t2p + ...) + uxt(X + tp + t2p + ...) + ••• 

= (u0 + uYt + ••• + Mp_itp"1)(l + tp + t2p + •••) 

= (w0 + wxt + ... + Up^t9'1)- — . 
A. — "0 

If H(t) has no linear factors 1 - rt with rp = 1, then H(t) has no linear 
factors in common with K(t). This means that no recurrence order for {un\ 
can be less than p. 

We see that pf<: |p and (pfS pSj ) = 1 for 1 _< i < j <_ t, so that 

Up = tfW 8l U fll . . . U et 

for some integer U. For n 2>_ 1> we have wnp = up and wn|^np, so that un\up. 
That wo = Up, so that un\u0 for all n, follows from 

a^u0 = uk - <̂ 2w/c-i - ••• - afcu2 

= Mp+fc- ^2UP+k-l ~ ""• ~ akuP + l 

= akup. 

REFERENCES 

1. Marshall Hall, "Divisibility Sequences of Third Order," Amer. J. Math., 
Vol. 58 (1936), pp. 577-584. 

2. John Riordan, Combinatorial Identities (New York: John Wiley & Sons, 
1968). 

MINIMUM PERIODS MODULO n FOR BERNOULLI NUMBERS 

W. HERGET 
Technische Universitat, Braunschweig, Fed. Rep. Germany 

The Bernoulli numbers Bm may be defined by 

(1) * » - d ^ 2 ( n : > (m>o)-
i = 0 

By the Rummer congruence, we have [2, p. 78 (3.3)], 

(2) f (-iy (r.)^i^ = o i o d p " , 

with u: = pe~1{p - 1), where r >_±, e >_ 1, m > re, p prime such that p - 1̂/7 
With r = 1 we get, in particular 
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(3) = — mod pe, 
m+y6-1^ - 1) 

where m > e, p - ±\m. 
Therefore, the sequence of the Bernoulli numbers is periodic after being 

reduced modulo n (where n is any integer) in the following sense. A ration-
al a/b with a, b e Z, gcd(a, b) = 1, may be interpreted as an element of Zn, 
the ring of integers modulo n, if,and only if the congruence relation yb = a 
mod n has a unique solution y e {0, 1, 2, . .., n - l} , i.e., if and only if 
gcd(b, ri) = 1. In this case, a/b is said to be n-integral. 

By the famous von Staudt-Clausen theorem we have for integer i and prime 
p (cf. [1] and [2]), 

B2i p - i n t e g r a l «=>p - l \ l i . 

Since B0 = 1 , B1 = - 1 / 2 and B 2 i + 1 = 0 for i e N, we ge t 

(4) Bm p - i n t e g r a l <=^>p - l)(mVm = OVw £ ( 3 , 5 , 7, . . . } . 
Now let Lin) be the smallest integer greater than 1 with the following prop-
erty: 

3 77?0 V/c, m >_ m0: 

(5) fSj, n-integral A /c = 7?7 mod L(n) ^ Bm ?z-integral f\Bk E 5m mod n). 

L(n) is called the period-length of the sequence {Bk mod n}. 
The smallest possible integer mQ in (5) is then called the pvepeviod of 

\Bk mod n} and will be denoted by Vin) . 
If n = n1n2 , where ni, n2 are coprime, then clearly 

L(n) = lcm(L(ni), L(n2)) and 7(n) = max(7(n1), F(n2)). 

Hence, it suffices to discuss the case n = pe , p a prime. We will prove 

Thzo/im J: (a) L(2e) = L(3e) = 2 

(b) F(2e) = F(3e) = 2 

(c) L(pe) = pe(p - 1), where p > 3 

(d) V(pe) <.e + 1. 
VK.00^'. If l\n or 3|n, none of the B2i is n-integral by (4); since B2 

= 0, this proves (a) and 7(2e) , V(3e) <_ 2. But 7(2e) = 1 and V(3e) = 1, re-
spectively, is impossible because Bl = -1/2 is not 2-integral and Si ^ 0 mod 
3e. So we get (b) too. 

Now let p > 3. From (3) we have, for m > e, p - l)fm, t >_ 0, 

£ m + £ p e - 1 ( p - 1) _ Bni 
1 1£ j — _ — moc| pe. hence, 

m + tpe (p - 1) 
(6) k = m + spe(p - l)Ap --±\mhm > e =^Bk ~ Bm mod pe. 

Consequently, L(pe)|pe(p - 1). On the other hand, we first prove p - 1 \L(p e ) : 
suppose p - l)(L(pe); we may choose 7?7 >. V(pe) + L(pe) such that p - 1|777 (and 
therefore m f 0 and 7?? £ (3, 5, 7, ...}), hence by (4) Bm is not p-integral. 
For k: = m - L(pe) , we have k = m mod pe, k >_ V(pe) and p - l\k, hence by (4) 
Bk is p-integral. But this is a contradiction to (5). So L(pe) = pl (p - 1) 
where t- e {0, . . . , e). It remains to show % = e. For this, we choose q e N 
such that s: = (qp(p - 1) + 2)p^ > V(pe). Because pe|s and p - l\s, we have 
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Bs - 0 mod pe [2, p. 78, Theorem 5]. Now suppose i < e. Then, Bk = Bs l 
mod pe if k = s mod p.(p - 1). Take 

k: = s + (p - l ) p * = (2 + (<7p2 + 3 ) ( p - D ) p * = 2 + t(p - 1) , 
where 

t : = 2 r _ ^ + (qp* + 3)p i e ff; 
P 

then by (3) w i th e = 1 and m = 2 , 

52 _ B2 + ( p - l ) _ _ Bk 
T = 2 + (p - T ) = • " = x m o d p ' 

where Bk E 0 mod pe. But, pe|s and pe\(p - l)pl gives p 6 ^ and, therefore, 
B2/2 E 0 mod p, contradictory to 52 = 1/6. Hence, i = e holds, and thus 

L(pe) = pe(p - 1) and F(pe) <_ e + 1 

by (6). 
Now we may improve this last inequality as follows: 

Th&QJim 2: 
1. V(p) = 2 for p prime. 
2. Let p be a prime, p > 3 and e e (2, 4, 6, ...}. Then, 

(a) Be f 0 mod p A p - l f e =>V(pe) = e + 1. 
(b) fc maximal such t h a t 

V0<.i<.k: ( 5 e . 2 i E 0 m o d p 2 i + 1 V p - l | e - 2 t ) 

^V(pe) = e - 1 - 2k. 

3 . Let p be a pr ime , p > 3 and e e { 3 , 5 , 7, . . . } . Then, 
(a) Be-i ? 0 mod p2A p - l\e - 1 => V(pe) = e. 
(b) & maximal such that 

VO £ i <_ k: {Be_l_2i E 0 mod p2i + 2\/p - l\e - 1 - 2£) 

=>F(pe) = e - 2 - 2k. 

VKOOl: By Theorem 1(d), we have V(p) <. 2. But V(p) < 2 is impossible 
since B1 - -1/2 ̂  0 mod p and S1 + L(P) = 0, thus V(p) = 2. 

For the proof of the other assertions we note that [4, p. 321, Cor.]: 

Y,(-iy(l)Bm + iv(l -p»-i + <vj = OBodp'C")- 1, 
i =0 

where p prime, p ̂  2, p - l|v, and pw is the highest power of p contained in 
V. 

Setting r: = 1 and v: = fc - #?, we get 

5^(1 - pm_1) - Bk(l - pk-x) E 0 mod pe, 

where pe(p - 1) \k - m and k >_ m >_ 1. Because 

k - 1 >_ m + pe(p - 1) - 1 >_ pe(p - 1) ̂  3e • 2 >_ e, 

we have , for k > m >_ 1 , p - l/fw: 
(7) fc E m mod p e (p - 1) =>Bk - Bm E p " 7 - 1 ^ mod p e . 

Now it is easy to verify the assertions. 
It is not very difficult to derive the following corollary, which gives 

the value of V(pe) "explicitly" for regular p (a prime p is said to be regu-
lar if and only if Bk f 0 mod p for each k e {2, 4, ..., p - 3}. 
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Cosiollasiy 7: Let p be r e g u l a r , p > 3 and e > 0. 
(a) I f 2\e then 

F(p e ) = e + l < ^ > p | e A p - l | e 

7 ( p e ) <. e - l < ^ = > p | e V p - l | e 

F (p e ) £ e - 3 <=> (p\eAp - l\e - 2 ) V ( p - l\eAp3\e - 2) 

^ e = 2 p mod p(p - 1) V e = 2 - 2p3 mod p 3 ( p - 1) 

F (p e ) = e - 5 «=>p = 5 A e E 252 mod 500 

V(pe) >. e - 5 . 

(b) I f 2 | e then 

F(p e ) = e <=^p2\e - l A p - \\e - 1 

F (p e ) £ e - 2 < = » p 2 | e - l V p - l\e - 1 

7 ( p e ) <. e - 4 < ^ > ( p 2 | e - l A p - l\e - 3) V (p - l\e - ±hph\e - 3) 

<=> e = 2p2 + 1 mod p 2 ( p - l ) V e 

= -2ph + 3 mod p^(p - 1) 

V(pe) = e - 6«=^p = 5Ae E 1253 mod 2500 

V(pe) >_ e - 6. 

For the proof, note that l\V{pe) holds for e > 1 and that in case of regular 
p and p - \\li,, we have 

S2i E 0 mod pe «=^>pe|2i. 

The assertions of Corollary 1 with "<==" are also valid for any irregular 
prime p. 

By Corollary 1, you may see that only for greater integers pe, the value 
V(pe) differs from e and e + 1, respectively. We get 

CoKolLcUty 2: For prime p , p > 3 , l e t e 1 = p - l , e2 = p , e3 = 2p, e^ = 
2 p 2 + l , e5 = 252, e6 = 1253. Then we have 

(a) F ( p e O < e { - i , t £ { l , . . . , 4 } . 
If p is regular, then V(pei) = ei - i, i e {l, ...,4), and there is 
no smaller power of p such that V(pe) = e - i. 

(b) 7(5&t ) = e{ - t, i e {5, 6}, and there is no smaller power of 5 such 
that V(5e) = e - i . 

(c) If p is regular and p > 5, then V(pe) >_ e - 4. 

For irregular primes, it is naturally somewhat more difficult to derive 
similar results about the smallest power of p such that V(pe) = e - i , where 
•i >_ 1. By Theorem 2, we get 

Be E 0 mod pA2|e => 7(pe) <. e - 1; 

hence, for each irregular prime p, we have V(pe) <L e - 1 for at least one e 
such that e £ e± = p - 1. 

Considering the table of irregular primes in [1] we may compute that n = 
691 2 is the smallest power of an irregular prime such that V(pe) = e - 1. 

There are still some open questions: 
1. Are there powers n - pe of some (necessarily irregular) prime p such 
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that e < et and V(pe) <.£-£, where i e {-2, 3, 4}? (By the computa-
tional results in [5] we may conclude that this does not happen when 
p < 30,000.) 

2. Is there a power n = pe of some irregular prime such that 

V(pe) < e - 5 ? 

VAJIGJL RojncUik: Professor L. Carlitz and Jack Levine in [3] asked similar 
questions about Euler numbers and polynomials. Analogous results about the 
periodicity of the sequence of the Bernoulli polynomials reduced modulo n and 
the polynomial functions over Z generated by the Bernoulli polynomials will 
be derived in a later paper. 
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THE RANK-VECTOR OF A PARTITION 
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1. INTRODUCTION 

The Ferrars graph of a partition may be regarded as a set of nested right 
angles of nodes. The depth of a graph is the number of right angles it has. 
For example, the graph 
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