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for some nonzero integer U. Finally, u, = u,, and un|u0 for n =0, 1,

Proog: By Lemma 7 and the fact that {u,} is a kth order recurrent se-
quence, the sequence {un} is periodic with period M. Letting p be the funda-
mental period, we now show that the denominator of the generating function
H(t)/K(t) must be of the form 1 - £°:

H(Z)
(%)

p-1 p p+1 v
Uy + U+ o0 + Uyt + u tt + ou,t +

ug(L+ 22+ %% + o) +u e+ tP + 2 4+ o) + -
(g + Uyt + oo + up 1P D@ + 2P + 2P+ -e)

gy L
1-t°
If H(t) has no linear factors 1 - rt with »P = 1, then H(%#) has no linear
factors in common with X(¢). This means that no recurrence order for {un}
can be less than p.
We see that pfi[p and (p;*, p;j) =1 for1<<<g<t, so that

= (g +ugt + -o0 +uy,

Up = Uupf, up;1 e Up:,

for some integer U. For n > 1, we have u,, = up and un|unp, so that u,|up.
That u, = 4p, S0 that u,|u, for all n, follows from
Ao = Uy = QuUzp_1 — *++ = A,

= Up+ k™ Aplpry-1 T~ Grlp4a

= AglUp .
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The Bernoulli numbers B,, may be defined by

B, =1

m-1
1 -(m-+1>
= E . . > .
B m + 1i=0 7 By (m > 0)

By the Kummer congruence, we have [2, p. 78 (3.3)],

€8]

r
, B 4 :
1y (T miiw - re
(2) 2% (-1 (i>n1+iw = 0 mod pre,
i=
with w: = p®~3(p - 1), where » > 1, ¢ > 1, m > re, p prime such that p-—l*m.

With » = 1 we get, in particular
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B e-1 _ B
(3) mrp (P - 75- mod p°,

m+pe Hp - 1)
where m > e, p - l*m.

Therefore, the sequence of the Bernoulli numbers is periodic after being
reduced modulo # (where # is any integer) in the following sense. A ration-
al a/b with a, b € Z, ged(a, b) = 1, may be interpreted as an element of Z,,
the ring of integers modulo 7, if and only if the congruence relation yb = g
mod # has a unique solution y € {O, 1, 2, ..., n - 1}, i.e., if and only if
ged (b, m) = 1. In this case, a/b is said to be n-integral.

By the famous von Staudt-Clausen theorem we have for integer 7 and prime
p (cf. [1] and [2]),

B,; p-integral <>p - 1}21.
Since By = 1, By =-1/2 and B,;,, = 0 for Z & N, we get
(%) By p-integral <>p - fmVm = 0Vm e {3, 5, 7, ...}.
Now let L{m) be the smallest integer greater than 1 with the following prop-
erty:
37770 Vk, m > vy
(5) (Bk n-integral Ak = m mod L(n) = B, n-integral AB, = B, mod n)

L(n) is called the period-length of the sequence {B, mod n}.
The smallest possible integer m; in (5) is then called the preperiod of
{Bk mod n} and will be denoted by V(n).
If n = nyn,, where n;, n, are coprime, then clearly
L) = lem(L(n1), L(ny)) and V(1) = max(V(ny), V(n2)).
Hence, it suffices to discuss the case n = p®, p a prime. We will prove
Theorem 1: (a) L(2%) = L(3%) =2
(b) V(2%) = V(3°) = 2
(c) L(p®)
(d) V(e <e+ 1.
Proof: If 2|n or 3|n, none of the B,; is m-integral by (4); since B;
= 0, this proves (a) and V(2°), V(3°) < 2. But V(2%) =1 and V(3°) = 1, re-
spectively, is impossible because B, = -1/2 is not 2-integral and B; # 0 mod

3¢, So we get (b) too.
Now let p > 3. From (3) we have, for m > e, p - 1fm, t >0,

pé(p - 1), where p > 3

Bm+t;p5‘1(p"l) = % mod pe; hence,
m+ tpe Hp - 1)
(6) k=m+spe(p - DANp - 1fmAm > e =B, = B, mod pe.

Consequently, L(pe)[pe(p - 1). On the other hand, we first prove p - 1|L(p®):
suppose p - 1{L(p?); we may choose m > V(p®) + L(p®) such that p - 1|m (and
therefore m # 0 and m ¢ {3, 5, 7, ...}), hence by (4) B, is not p-integral.
For k: = m - L(p®¢), we have kK = m mod pe, k > V(p¢) and p - l*k, hence by (4)
By 1is p-integral. But this is a contradiction to (5). So L(p®) = pit(p - 1)
where 7 € {0, ..., e}. It remains to show ¢ = e. TFor this, we choose g € N
such that s: = (gp(p - 1) + 2)p¢ > V(p?). Because p¢|s and p - 1fs, we have
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Bs = 0 mod p® [2, p. 78, Theorem 5]. Now suppose 7 < e. Then, By = By = 0
mod pe if k = s mod p. (p - 1). Take

ki =s+ (p-Dpt=(2+(@2+3D@-)pt=2+tp-1),

where ;
N Al 2 : .
t: 2p_l+(qp + 3)pt € N
then by (3) with e = 1 and m = 2,
Ba o _Bavp-n) - _ B
22+ G- T TE ™D

where By = 0 mod p¢. But, p¢|s and pef(p - 1)p? gives p¢fk and, therefore,
B,/2 = 0 mod p, contradictory to B, = 1/6. Hence, ¢ = e holds, and thus

L(p¢) = pé(p - 1) and V(p®) <e+1

by (6).
Now we may improve this last inequality as follows:
Theorem 2:

1. V(p) = 2 for p prime.

2. Let p be a prime, p > 3 and ¢ € {2, 4, 6, ...}. Then,
(a) Be 20 mod pAp - 1fe =V (pe) = e + 1.
(b) %k maximal such that

V0 <7 < k: (Be-gs = 0 mod p>**1Vp - 1le - 27)
=V({pe) =e -1 - 2k.

3. Let p be a prime, p > 3 and e € {3, 5, 7, ...}. Then,
() Be-1 # 0mod p?’Ap - Lfe - 1 =>V(p®) = e.
(b) k maximal such that

YO <7 <k: (B, ,; =0modp?**?Vvp - 1le - 1 - 27)
=>V(pe) =e - 2 - 2k.

Proog: By Theorem 1(d), we have V(p) £ 2. But V(p) < 2 is impossible
since By = -1/2 # 0 mod p and B;,(p) = 0, thus V(p) = 2.
For the proof of the other assertions we note that [4, p. 321, Cor.]:

r
Z(—l)i (;J)Bmwlv(l - p”"l*'i") = 0 mod pr(w+1)-1,
=0

where p prime, p # 2, p - l[\), and p® is the highest power of p contained in
v Setting r: = 1 and v: = k - m, we get
Bp(1 - p™ Y - B,(1L - p¥~1) = 0 mod pe,
where pé(p - l)lk - mand k > m > 1. Because
k-1>m+pe(p-1) -1>pe(p-1) >3°+2>e¢e,
we have, for k >m > 1, p - 1fm:
(7) k =m mod p(p - 1) =By - By = p™ 1B, mod p°.

Now it is easy to verify the assertions.

It is not very difficult to derive the following corollary, which gives
the value of V(p¢) "explicitly" for regular p (a prime p is said to be regu-
lar if and only if By # O mod p for each k € {2, 4, ..., p - 3}.
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Conollarny 1: Let p be regular, p > 3 and e > 0.
(a) If 2|e then

V(pe) = e+ 1<>pleAp - 1fe
V(pe) <e - 1L<>plevp - 1]e
V(pe) <e - 3<> (pleAp - 1le - 2)V(p - 1]eAp®le - 2)
«>¢ = 2pmod p(p - 1)Ve =2 - 2p° mod p(p - 1)
V(pe) = e - 5<>p =5Ae = 252 mod 500

V(pe) > e - 5.
(b) 1If 2}e then
V(pe) = e<>p’fe - 1Ap - 1fe - 1
V(pe) <e - 2<>p’le - 1Vp - 1]le - 1
V(pe) <e - 4<>(p?le - 1Ap - 1le = 3)V(p - 1]e - 1Ap*|e - 3)
<>ec = 2p> + 1 mod p?(p - 1) Ve
= —2pL+ + 3 mod p”(p - 1)
V(pe) = e - 6<=>p = 5Ae = 1253 mod 2500
V(pe) 2 e - 6.

IA

For the proof, note that Z*V(pe) holds for e > 1 and that in case of regular
p and p - 1f27, we have

By: = 0 mod pe <>p°|2i.
The assertions of Corollary 1 with "<'" are also valid for any irregular
prime p.
By Corollary 1, you may see that only for greater integers p¢, the value
V(p¢) differs from e and e + 1, respectively. We get

Corollary 72: For prime p, p > 3, let e, =p -1, e, =p, e, =2p, e, =
2p2+-l, es = 252, eg = 1253. Then we have

(a) V(%) <e; -1, 2 {1, ..., &}.

If p is regular, then V(p®) = ¢, - <, 1 € {1, ..., 4}, and there is
no smaller power of p such that V(p®) = e - 7.

(b) V(%) =e; -1, 7 € {5, 6}, and there is no smaller power of 5 such
that V(5%) = e - <.

(¢) If p is regular and p > 5, then V(pe) > e - 4.

For irregular primes, it is naturally somewhat more difficult to derive

similar results about the smallest power of p such that V(p¢) = e - 7, where
7 > 1. By Theorem 2, we get

B, = 0 mod pA2|e =>V(pe) <e - 1;

hence, for each irregular prime p, we have V(p?) < e - 1 for at least one e
such that e < e; =p - 1.
Considering the table of irregular primes in [1] we may compute that n =
69112 is the smallest power of an irregular prime such that V(pe) = e - 1.
There are still some open questions:

1. Are there powers n = p® of some (necessarily irregular) prime p such
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that e < e; and V(p®) < e - 7, where © € {2, 3,4}? (By the computa-
tional results in [5] we may conclude that this does not happen when
p < 30,000.)
2. 1Is there a power n = p¢ of some irregular prime such that
V(pe) < e - 57

Final Remark: Professor L. Carlitz and Jack Levine in [3] asked similar

questions about Euler numbers and polynomials. Analogous results about the
periodicity of the sequence of the Bernoulli polynomials reduced modulo n and
the polynomial functions over Z generated by the Bernoulli polynomials will
be derived in a later paper.
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THE RANK-VECTOR OF A PARTITION
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1. INTRODUCTION

The Ferrars graph of a partition may be regarded as a set of nested right

angles of nodes. The depth of a graph is the number of right angles it has.
For example, the graph
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