11. D. H. Voelker, "On a Class of Polynomials," Notices of Amer. Math. Soc., Vol. 18 (1971), p. 800. Abstract 71T-A162.
12. D. H. Voelker, "On a Class of Polynomials," Rev. Un. Mat. Argentina, Vol. 26 (1972), pp. 115-124.
13. Problem 1125, American Math. Monthly, Vol. 61 (1954), p. 423; Solution to Problem 1125, American Math. Monthly, Vol. 62 (1955), pp. 125-126. Posed by Walter James; solution by A. R. Hyde.

A FIGURATE NUMBER CURIOSITY: EVERY INTEGER IS A QUADRATIC FUNCTION OF A FIGURATE NUMBER

HARVEY J. HINDIN
Empire State College, Stony Brook, NY 11790
In this note we prove the following: Every positive integer n can be expressed in an infinite number of ways as a quadratic function for each of the infinite number of figurate number types.

The nth figurate r-sided number p_{n}^{r} is given by
(1)

$$
p_{n}^{r}=n((r-2) n-p+4) / 2
$$

where $n=1,2,3, \ldots$ and $r=3,4,5, \ldots$. Therefore, the snth figurate number is given by

$$
\begin{equation*}
p_{s n}^{r}=\operatorname{sn}((r-2) s n-r+4) / 2 \tag{2}
\end{equation*}
$$

However, (2) is a quadratic in n. Solving for n and taking the positive root yields

$$
\begin{equation*}
n=\frac{(r-4)+\sqrt{(r-4)^{2}+8(r-2) p_{s n}^{r}}}{2(r-2) s} \tag{3}
\end{equation*}
$$

which allows us to express n as stated above. A special case of (3) for pentagonal numbers ($r=5$) was obtained by Hansen [1].

REFERENCE

1. R.T. Hansen, "Arithmetic of Pentagonal Numbers." The Fibonacci Quarterly, Vol. 8, No. 1 (Feb. 1970), pp. 83-87.
